A NEW APPROACH TO DEFORMING TRIANGULATED CATEGORIES

Alessandro Lehmann SISSA and University of Antwerp

Motivation: the curvature problem

Let A be a dg-algebra over a field k. It is a well known problem in deformation theory [KL09] that (first order) deformations of A as a dg-algebra do not suffice to span its whole second Hochschild cohomology. It turns out [Low08; Leh24] that $HH^2(A)$ parametrizes first order deformations of A as a *curved* dg algebra. This is a significant issue, since cdg algebras do not have classical derived categories [Pos10]; in particular, there is no obvious deformation of D(A) corresponding to a curved deformation of A [KLN10]. The same problem was observed by Lurie in a different setting: he essentially showed in [Lur11] that the functor

 $\operatorname{Def}_A \colon \operatorname{dgart}_k \to \operatorname{Set}$

which associates to a (dg) local artinian k-algebra R the set of R-deformations of A as a dg-algebra is not a (derived) deformation functor. The main question that we aim to answer is the following:

Which deformation of D(A) corresponds to a curved deformation of A?

Lurking behind this one is a more fundamental question: which notion of deformation of a triangulated category allows for the question above to have a positive answer? The usual one – which roughly corresponds to reducing the hom-sets of an opportune resolution – cannot work: to a curved deformation of A corresponds a curved deformation of the dg-category D(A), which does not have an underlying triangulated category. This question is a crucial step towards obtaining a satisfactory deformation theory for noncommutative schemes.

cdg algebras

A cdg algebra A over a commutative ring R is a triple (A[#], d_A, c) where:
A[#] is a graded R-algebra;
d_A: A[#] → A[#] is a degree 1 derivation;
c ∈ A[#] is a degree 2 element such that d_Ac = 0 and d²_A = [c, -].

A cdg module M over a cdg algebra \mathcal{A} is a pair $(M^{\#}, d_M)$ where $M^{\#}$ is a graded $\mathcal{A}^{\#}$ -module and

 $d_M \colon M^{\#} \to M^{\#}$ is a degree 1 derivation such that $d_M^2 m = cm$.

Key point: if M and N are cdg \mathcal{A} -modules, then

 $Hom_{\mathcal{A}}(M, N)$ is a *complex*, so \mathcal{A} -Mod is a (pretriangulated) dg-category.

The *n*-derived category

Let A_n be a cdg deformation of A over $k[t]/(t^{n+1})$. A cdg A_n -module M is n-acyclic if its associated graded with respect to the t-adic filtration is acyclic; this makes sense since each graded piece is a complex. The n-derived category $D^n(A_n)$ is the Verdier quotient $D^n(A_n) = H^0 A_n \operatorname{-Mod}/n \operatorname{-Ac}(A_n)$.

Theorem 1 ([LL24])

- The category $D^n(A_n)$ is generated by n+1 explicit compact objects $\Gamma_0, \ldots, \Gamma_n$ and the projection H^0A_n -Mod $\to D^n(A_n)$ admits both adjoints;
- Calling A_i the induced deformation of order $i \leq n$, the restriction functor A_i -Mod $\rightarrow A_n$ -Mod induces a system of fully faithful embeddings

 $D(A) = D^{0}(A_{0}) \stackrel{i_{1}}{\hookrightarrow} D^{1}(A_{1}) \hookrightarrow \ldots \hookrightarrow D^{n-1}(A_{n-1}) \stackrel{i_{n}}{\hookrightarrow} D^{n}(A_{n});$

• The abelian category Z^0A_n -Mod admits a model structure presenting $D^n(A_n)$;

The classical case

If A_n has no curvature, one can consider the classical derived category $D(A_n)$. One sees that there are strictly more *n*-acyclics than acyclics; it turns out that $D^n(A_n)$ can be seen as a (partial) categorical resolution of $D(A_n)$. Indeed: • There is an embedding $D(A_n) \hookrightarrow D^n(A_n)$;

$D^n(A_n)$ as a categorical extension

The embedding $D^{n-1}(A_{n-1}) \stackrel{i_n}{\hookrightarrow} D^n(A_n)$ admits both a left adjoint Ker t^n and a right adjoint Coker t^n . We also have the functor $\operatorname{Im} t^n \colon D^n(A_n) \to D(A)$. These functors do not need to be derived, since they preserve *n*-acyclics.

Theorem 2 ([LL24])

However, cdg modules have no cohomology, so there is no obvious notion of a derived category of \mathcal{A} [Pos10; KLN10].

• The (dg) category $D^n(A_n)$ is smooth if and only if D(A) is smooth.

induces an equivalence between the quotient $D^n(A_n)/D^{n-1}(A_{n-1})$ and D(A).

Inductively, we see that $D^n(A_n)$ is obtained by gluing n + 1 copies of D(A).

Deformations of triangulated categories (WIP)

All triangulated categories and functors between them are appropriately enhanced. Let \mathcal{T} be a triangulated category. A first order predeformation of \mathcal{T} is the datum of a recollement

together with two natural transformations $I \xrightarrow{\eta_1} K$ and $Q \xrightarrow{\eta_2} I$. The recollement data also induces a natural transformation $K \xrightarrow{\alpha} Q$; a predeformation is said to be a deformation if α induces a natural isomorphism $\bar{\alpha}$

Main result: a commutative diagram of deformations

Theorem 3 (WIP)

Let \mathcal{T} be a triangulated category. There is a bijection

 $\operatorname{Def}_{k[\varepsilon]}^{\operatorname{cat}}(\mathcal{T}) \xleftarrow{\kappa} \operatorname{HH}^{2}(\mathcal{T})$

between first order deformations of \mathcal{T} as a triangulated category and its second Hochschild cohomology.

The point of the bijection is that the gluing functor is the cone of the Hochschild cocycle.

Theorem 4 (WIP)

There is a commutative diagram of bijections

between the cone C of η_1 and the cocone D of η_2 . Denote with $\operatorname{Def}_{k[\varepsilon]}^{\operatorname{cat}}(\mathcal{T})$ the set of first order deformation of \mathcal{T} up to equivalence.

Where $\operatorname{cDef}_{k[\varepsilon]}^{\operatorname{Mor}}(A)$ is the set of curved deformations of A up to equivalence of 1-derived categories; the upper arrow was introduced in [Leh24], while χ_A is the characteristic morphism introduced in [Low08].

References

[KL09] Bernhard Keller and Wendy Lowen. "On Hochschild Cohomology and Morita Deformations". In: Int. Math. Res. Not. 2009 (2009).

[KLN10] Bernhard Keller, Wendy Lowen, and Pedro Nicolás. "On the (non)vanishing of some "derived" categories of curved dg algebras". In: J. Pure Appl. Algebra 214.7 (2010).

[Leh24] Alessandro Lehmann. Hochschild cohomology parametrizes curved Morita deformations. 2024. arXiv: 2406.04945.

[LL24] Alessandro Lehmann and Wendy Lowen. Filtered derived categories of curved deformations. 2024. arXiv: 2402.08660.

[Low08] Wendy Lowen. "Hochschild cohomology, the characteristic morphism and derived deformations". In: Compos. Math. 144.6 (2008).

[Lur11] Jacob Lurie. Derived Algebraic Geometry X: Formal Moduli Problems. 2011.

[Pos10] Leonid Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Mem. Am. Math. Soc. 2010.

alessandrolehmann.com

