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Introduction

In this thesis we will study the theory of dg-enhancements of triangulated
categories. In particular, we show the existence and uniqueness of dg en-
hancements for a wide class of triangulated categories. We will now give a
brief introduction to these ideas.

The concept of localization is ubiquitous in mathematics; this can be
roughly understood as the act of considering objects in a category up to a
certain relation, that is in general weaker than that of isomorphism. There
are two typical examples, one coming from algebra and one from topology. In
algebra, when studying categories of chain complexes, one has two meaning-
ful classes of such relations: homotopy equivalences and quasi-isomorphisms;
localizing with respect to the first gives the homotopy category, while lo-
calizing with respect to the second gives the derived category. In topology
one has a similar picture, where it can be interesting to consider objects
up to homotopy equivalence or up to weak homotopy equivalence. Let us
leave behind for now the topological example, and focus on the algebraic
one; in particular, let us recall some facts about how the homotopy category
is constructed. The key point here is that the basic relation is a notion of ho-
motopy between morphisms: two morphisms are deemed equivalent if there
exists a homotopy between them, and a morphism is considered a homotopy
equivalence if it admits an inverse “up to homotopy”. The homotopy cate-
gory of chain complexes has fairly rich structure, captured by the notion of a
triangulated category; this is roughly a category with a weak form of kernels
and cokernels, and where kernels and cokernels coincide in a suitable sense.
In particular, given a morphism in the category of chain complexes, one can
define its cone: an object that, when considered up to homotopy, is a weak
cokernel.

Here is where the problems begin: as a consequence of the axioms of a
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triangulated category, given any diagram of the form

A B

A′ B′

f

f ′

u v

that is commutative up to homotopy, there has to exist an induced mor-
phism from the cone of f to the cone of f ′. This exists, but its construction
depends explicitly on the specific homotopy between f ′u and vf . In the ho-
motopy category, where one has already forgotten everything except the fact
that such a homotopy exists, it is not possible to define such a morphism
in any canonical way. This issue is not peculiar to the homotopy category;
one says (and after having appropriately defined its terms, proves) that in a
triangulated category, the cone construction is not functorial. This creates
some issues, in particular when trying to understand relationships between
different triangulated categories. One is then led to consider enhanced cat-
egories: categories where, besides which morphisms are equivalent, one also
records what are the homotopies, the homotopies between the homotopies,
an so on. Of course, one would have to consider this enhanced category itself
up to some sort of equivalence, as to not defy the initial intent of localiz-
ing. The formalization of the general concept of an enhanced category is not
easy: Grothendieck, in the nineties, proposed the concept of a dérivateur, or
derivator, while in the last years many authors have adopted the framework
of ∞-categories, in several of their different incarnations.

Fortunately, if one restricts themselves to algebraic settings, the situation
is noticeably simpler. After all, the homotopy category of chain complexes
comes with a natural enhancement: given two chain complexes, one can
easily define their internal hom: a chain complex encoding in degree 0 the
morphisms between the objects, in degree −1 the homotopies between mor-
phisms, and so on. This defines a differential graded category (from now
on, dg-category), a category whose hom-spaces are in a natural way chain
complexes; taking the homology of this dg-category (i.e. keeping the ob-
jects unchanged, but taking the homology of the hom-spaces), one recovers
the homotopy category of chain complexes. Formally, one says that a dg-
enhancement of a triangulated category is a dg-category whose homotopy
category, defined as before by taking the homology of the hom-spaces, is
equivalent to the first category. It turns out that most triangulated 1 cate- 1Enhancement

of this type are
mainly useful for
triangulated cate-
gories, since taking
the homology
of a dg-category
gives back a
category that is
always “almost”
triangulated.

gories appearing in algebra and algebraic geometry admit dg-enhancements;
in particular, derived categories always admit dg-enhancements. Further-
more, dg-categories admit a quite natural form of equivalence, called quasi-
equivalence. The main results presented in this thesis aim to show that this
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is a good point of view to take. First we will show that all “algebraic” tri-
angulated categories admit a dg-enhancement, and then that for a very wide
class of categories this enhancement is unique up to quasi-equivalence: the
uniqueness result that we will prove is due to Lunts and Orlov, and was first
proved in [LO10]. Moreover, and maybe more importantly, the notion of
dg-category up to quasi equivalence is in general better behaved than that
of triangulated category, not presenting any of the issues related to the non
functoriality of the cone.2 2Besides hav-

ing several other
advantages, that
we will not discuss
here.

The thesis is structured in four chapters. The first one is dedicated to
introducing the theory of localization and of triangulated categories, as well
as their relationship in the form of Verdier and Bousfield localization; in the
last section, we briefly introduce Quillen’s model categories.

The second chapter is a short recollection of some known issues with tri-
angulated categories. In particular, we prove there that it is almost never
possible to define a functorial cone in a triangulated category, and that the
category of morphisms of a triangulated category does not admit a triangu-
lated structure.

Chapter three introduces the theory of dg-categories and dg-enhancements.
All the basic definitions are given here, as well as the proofs of most foun-
dational results. In the last part of the chapter, we give an overview of
the homotopy theory of dg-categories and Drinfeld’s construction of the dg-
quotient.

In the fourth and last chapter we deal with the question of uniqueness of
dg-enhancements. In particular, we show the proof of a results by Lunts and
Orlov regarding the uniqueness of the enhancement for the derived category
of a Grothendieck abelian category with a set of generators that are compact
in the derived category. This proof is fairly long and takes up most of the
chapter. In the final part, we discuss some recent developments that have
followed the publication of [LO10].
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Notations and conventions

We fix a universe U. We will call small sets (or in general, sets) sets that are
small with respect to U.

We assume basic knowledge of category theory. By definition, all of our
categories have small hom-set. We will use without distinction the words
coproduct and direct sums, as well as the symbols

∐
and

⊕
to denote the

categorical coproduct; as a general rule, we will use
⊕

in additive settings
and

∐
in the general case. A small (co)limit will be a (co)limit indexed by a

category whose class of objects is a small set. If C is a (eventually enriched)
category, we will denote with

HomC(A,B)

the hom-space of morphisms between A and B, unless we want to stress the
enriched nature of C, in which case we will write

C(A,B)

for the same object. In particular, when dealing with dg-categories, we will
always use the second writing. All of our chain complexes will have cohomo-
logical notation, i.e. with differential increasing the index.
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Chapter 1

Preliminaries

1.1 Localizations, I

We begin with a brief introduction to the concept of localization of a category.
References for this section are [GM02], [GZ67], [Wei94] and [Kra09].

1.1.1 Categories of fractions

Fix a category C. We say that a functor F : C → D makes a morphism s
invertible if F (s) is an isomorphism.

Definition 1.1. Let S be an arbitrary class of morphisms in C. The local-
ization of C at S is a category C[S−1] together with a functor

Q : C → C[S−1],

called quotient functor, satisfying the following properties:

• Q makes all the morphisms in S invertible;

• Any functor G : C → D making all the morphisms in S invertible
factors uniquely through Q via a functor G̃ : C[S−1]→ D.

From the definition it follows immediately that if a localization exists,
it is unique. We can also prove that, modulo a set-theoretic issue, localiza-
tions always exist. Set Ob(C[S−1]) = Ob(C). Then, for two objects A,B
define HomC[S−1](A,B) in the following way: first consider the class of all the
sequences

A→ A′ ← A′′ → · · · → B′ ← B

where all the right-pointing arrows lie in S. Beware that we do not require
the sequence to be an alternating sequence of right-pointing and left-pointing
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arrows, since we do allow multiple arrows in the same direction; also, the first
and last arrow can be either outward or inward. Now quotient this class by
the following relations:

• Two consecutive morphism pointing in the same direction can be re-
placed by their composition;

• For any morphism A
s→ B in S, the sequence

A
s→ B

s← A

can be replaced with

A
id→ A.

Define HomC[S−1](A,B) as this quotient; composition is given by concatena-
tion of sequences, while the identity is given the sequence

A
id→ A.

Finally, define the functor Q as the identity on objects and sending a mor-
phism f : A→ B to the sequence of length one

A
f→ B.

It is straightforward to verify that the just defined object satisfies the uni-
versal property of a localization. However in general, for fixed objects A and
B, HomC[S−1](A,B) does not form a small set, not making C[S−1] actually
a category; furthermore, it is virtually impossible to give useful descriptions
of the morphism spaces between two objects, with zigzags arbitrary length
not being prone to explicit calculation. In practice though, most of the times
one is not interested in inverting arbitrary families of morphisms, but classes
of morphisms arising in some natural way, that are usually easier to deal
with: we now briefly recall two different approaches to localizing a category
in some specialized cases. The first, the calculus of fractions, is in principle
much less refined than the second, Quillen’s theory of model categories; it is
nonetheless important to discuss both of them, since the calculus of fractions
as a crucial application in defining Verdier quotients.

1.1.2 Multiplicative systems

A class of morphisms S is said to admit a calculus of left fractions if the
following properties are satisfied:
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(LF1) All the identities lie in S, and compositions of morphisms in S lie in S;

(LF2) Each pair of morphisms A
s← X

f→ B with s ∈ S can be completed to
a commutative square

X B

A X ′

s

f

f ′

s′

with s′ ∈ S;

(LF3) For any diagram of the form

X ′ X Ys α

β

such that s ∈ S and α ◦ s = β ◦ s, there exists a morphism t : Y → Y ′

such that t ∈ S and t ◦ α = t ◦ β.

If the dual conditions are satisfied, S is said to admit a calculus of right
fractions. If S admits a calculus of left fractions and a calculus of right
fractions, it is called a multiplicative system.

If S admits a calculus of left fractions, it is possible to give a very explicit
description of the hom-spaces of C[S−1]. Given two objects X and Y , any
morphism between them in C[S−1] is represented by a “roof” or left fraction

Z

X Y

f s

with s ∈ S; such a roof should be interpreted as the formal fraction s−1f . It
is a useful exercise to interpret in this light the meaning of condition LF2 :
it tells us that we can “move the denominator from the left to the right”, in
analogy the the localization of a non commutative ring. Two roofs

Z Z ′

X Y and X Y

f s g t
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are considered equivalent if there exists a commutative diagram

Z

X Z ′′ Y

Z ′

f s

g t

h l

with l ∈ S. The composition of two roofs

Z Z ′

X Y W

f s g t

is defined by applying condition LF2 to the middle “V”, and finding the
diagram

Z ′′

Z Z ′

X Y W.

f s g t

t s′

Since s′ ∈ S and S is closed under compositions, we can define the composi-
tions as the roof

Z ′′

X W.

tf s′t

This (see for example [GM02] or [Kra09]) defines a category, and the so
constructed category satisfies the universal property of the localization. The
functor Q : C → C[S−1] is the identity on objects and sends a morphism

X
f→ Y to the roof

Y

X Y.

f idy

Dually, if S admits a calculus of right fractions, we can define a right
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fraction as a roof
Z

X Y

s f

with s ∈ S, and proceed in the same way as before.

Remark. We have seen that, in the presence of a multiplicative system,
the hom-spaces of a localization admit an explicit and simple construction.
Nonetheless, this does not guarantee the smallness of the hom-spaces, since
the vertex of the roof is an arbitrary object in the category; in fact, localized
categories with non-small hom-spaces arise in nature - that is, provided a
very loose definition of nature - see for example [Kra09, Example 4.15].

It is often useful to find either a left or a right adjoint to the quotient
functor, since in that case we are able to realize the hom-spaces in the quo-
tient as hom-spaces between particular objects in the non-localized category:
indeed, suppose that Q has a right adjoint ρ. Then, for any X, Y ∈ C,

HomC[S−1](QX,QY ) ∼= HomC(X, ρQY ).

It turns out that it is fairly easy to find conditions for the quotient functor to
admit adjoints, just using the fact that S is a multiplicative system; this is
done in full generality in [Kra09]. Since we will only be interested in the case
of triangulated categories, we will not deal with the general case, delaying
this discussion to Chapter 1.3.

1.2 Triangulated categories

1.2.1 Some basic homological algebra

In this section, A will represent a fixed abelian category. We now briefly
review some definitions and basic results about chain complexes in A; good
sources for this are [Wei94] and [GM02]. Recall that a (cohomological) chain
complex A of objects in A is a collection {Ai}i∈Z of objects in A together
with morphisms di : A

i → Ai+1 such that di+1 ◦ di = 0 for every i. We
will often suppress the subscript i from the morphism di, writing the above
condition simply as d2 = 0. We will denote with ZiA ⊆ Ai the kernel of
di, and with BiA ⊆ Ai the image of di−1. We will call the elements of ZiA
the i-cycles (or closed elements), while the elements of BiA will be called
i-boundaries. Since the condition d2 = 0 implies that BiA ⊆ ZiA, we can
define the i-th homology of a chain complex A as H iA = ZiA/BiA. A chain
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map f : A → B is a collection f i : Ai → Bi of morphisms in A commuting
with the differentials, i.e. such that dif

i = f i+1di. By definition, a chain
map f sends cycles to cycles and boundaries to boundaries, so induces a
map in homology f i∗ : H

iA→ H iB. If f i∗ is an isomorphism for every i, f is
said to be a quasi-isomorphism. Given a chain complex A, we can define the
shifted complex A[n] by setting A[n]i = An+i and dA[n] = (−1)ndA. a chain
complex A is said to be bounded above if An = 0 for n >> 0; bounded below
if An = 0 for n << 0 and bounded if it is both bounded above and bounded
below. If H iA = 0 for every i, A is said to be acyclic.

Definition 1.2. The category C(A) of chain complexes of objects in A is
the category whose objects are chain complexes of objects in A and whose
morphisms are chain maps.

C(A) is an abelian category, with kernels and cokernels being com-
puted degree-wise. Recall now that a homotopy h between two chain maps
f, g : A → B is a collection of morphisms hi : Ai → Bi−1 such that di−1h

i +
hi+1di = f i − gi for each i. Two chain maps are said to be homotopic if
there exists a homotopy between them; in that case we will write f ∼h g1. A 1The h here

stands for the
word homotopy,
not for the specific
homotopy between
f and g.

nullhomotopy of a chain map is an homotopy between it and the zero mor-
phism. It is straightforward to verify that being homotopic is an equivalence
relation, and that two homotopic maps induce the same morphism in homol-
ogy. A chain map f : A → B is said to be a homotopy equivalence if there
exists a chain map g : B → A such that fg ∼h idB and gf ∼h idA; since
homotopic morphisms induce the same morphism in homology, an homotopy
equivalence is in particular a quasi-isomorphism. Note that the converse is
in general not true.

In this case, we have two classes of morphisms that we may be interested
in inverting: the homotopy equivalences and the quasi-isomorphisms. Un-
fortunately, as it is, neither of them form a multiplicative system. However,
unlike quasi-isomorphisms, homotopy equivalences are already defined hav-
ing a built-in “almost-inverse”: to turn them into isomorphisms, it should
be enough to consider them as honest inverses, that is to identify homotopic
morphisms as equivalent.

Definition 1.3. The homotopy category of chain complexes K(A) is defined
as having the same objects as C(A), and hom-spaces

HomK(A)(A,B) = HomC(A)(A,B)�∼h,

where ∼h represents the homotopy relation.
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Sometimes K(A) is just called the homotopy category. It is easy to verify
that this definition is well posed, i.e. that composition with homotopic mor-
phisms yields homotopic morphisms and that HomK(A)(A,B) inherits the
additive structure from HomC(A)(A,B). We also have an additive functor
Q : C(A)→ K(A) acting as the identity on objects and sending a morphism
to its equivalence class in the quotient. The following proposition is then
very natural.

Proposition 1.4. K(A), equipped with the functor Q is the localization of
C(A) at the homotopy equivalences.

Sketch of the proof. We want to prove that any functor F : C(A)→ C to an
arbitrary category inverting all homotopy equivalences factors through K(A).
This will follow if we prove that if f ∼h g, then F (f) = F (g). In order to do
this, consider the following construction: for a given chain complex A, define
the chain complex Cyl(A) by setting

Cyl(A)n = An ⊕ An+1 ⊕ An

and
d(xn, yn+1, zn) = (dxn + yn+1,−dyn+1, dzn − yn+1).

It is a straightforward exercise to prove that Cyl(A) is indeed a chain complex
and that chain maps ϕ : Cyl(A) → B correspond to triples (f, h, g) where
f, g : A → B are chain maps and h is a homotopy between f and g. This
bijection is made explicit by defining the two natural inclusions (in the first
and third summand) i0, i1 : A → Cyl(A) so that, for any ϕ : Cyl(A) → B,
we find f = ϕ ◦ i0 and g = ϕ ◦ i1. Furthermore, i0 and i1 are homotopy
equivalences: their (common) homotopy inverse is given by the morphism
p : Cyl(A) → A representing the trivial homotopy between the identity of
A and itself. We are now ready to conclude the proof: let f, g : A → B be
two homotopic morphisms, and let ϕ : Cyl(A) → B be the corresponding
morphism. Since F inverts all homotopy equivalences, we know that F (i0) =
F (i1) = F (p)−1. Since ϕ ◦ i0 = f and ϕ ◦ i1 = g, it follows that F (f) =
F (g) = F (ϕ) ◦ F (p)−1.

The advantage of this approach is two-fold: to begin with, we now have a
very explicit description of the localized category. Moreover, it now happens
that the class of quasi-isomorphisms, that is well defined in K(A) in virtue of
the fact that homotopic chain maps induce the same morphism in homology,
is now a multiplicative system.

Definition 1.5. The derived category D(A) of A is defined as the localiza-
tion of K(A) at the quasi-isomorphisms.

7



It is true (but not completely obvious) that we could also have defined
abstractly D(A) as the localization of C(A) at the quasi-isomorphisms ob-
taining the same object, although in a way that is much harder to describe.
Since D(A) is maybe better understood as a Verdier quotient, we will give
more details on this construction and the fact that quasi-isomorphisms form a
multiplicative system in the following sections: for now, we will keep focusing
onK(A). For future uses, we also define the full subcategoriesK+(A), K−(A)
andKb(A) ofK(A) composed by respectively bounded below, bounded above
and bounded chain complexes.

1.2.2 Triangulated categories

This section contains barely any proofs, aiming mainly at defining the ob-
jects and discussing their main properties. Nonetheless, we try to give full
references for the stated results. A comprehensive source on triangulated
categories is Neeman’s book [Nee01b].

We have already seen that the category C(A) is an abelian category, and
that its additive structure on the hom-spaces descends to K(A). It is also
easy to see that it admits finite biproducts, and that the canonical functor
Q : C(A)→ K(A) preserves both products and coproducts. However, K(A)
is almost never itself abelian, since, for example, in general K(A) does not
possess cokernels: cokernels in C(A) are not cokernels in K(A). The best
approximation of a cokernel which exists in K(A) the cone of a morphism.

Definition 1.6. Let A,B be chain complexes and f : A → B a chain map.
Its cone C(f) is defined as the chain complex having in degree n the object

C(f)n = An+1 ⊕Bn

and differential

d(xn+1, yn) = (−dAxn+1, dBy
n + fn+1(xn+1))

for xn+1 ∈ An+1 and yn ∈ Bn.

It is easy to verify that C(f) is a chain complex and that there exist
natural chain maps i : B → C(f) and p : C(f) → A[1] assembling into a
short exact sequence

0→ B → C(f)→ A[1]→ 0.

As a consequence (via the long exact sequence in homology), a morphism is
a quasi-isomorphism if and only if its cone is acyclic. One can also prove that
a morphism is a homotopy equivalence if and only if its cone is isomorphic
to 0 in K(A).
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Foreshadowing remark. C(f) is a homotopy cokernel of f , in the following
sense: morphisms from C(f) to D correspond to morphisms g : B → D
together with a nullhomotopy h of g ◦ f . It should be stressed that those are
not the same as morphisms g : B → D for which there exists a nullhomotopy
of the composition, as that would just be a cokernel in K(A); the specific
nullhomotopy is part of the datum of the morphism from the cone. This, as
we will see in the following chapters, is problematic: the homotopy category
K(A) knows when two morphisms are homotopic, but not what the homotopy
between them is. If a construction necessitates the explicit homotopy (versus
the sole knowledge that such a homotopy exists) this construction is not
possible in K(A). This fact will lead us to consider “enhanced” categories,
i.e. categories where one records, besides which morphisms are homotopic,
also what are the homotopies (and what are the homotopies between the
homotopies...)

So K(A) is not abelian, but nonetheless has much more structure than
that of a general additive category. It turns out that a good formalization
of its properties is that of a triangulated category. Let us now state its
definition.

Definition 1.7. Let T be an additive category, equipped with an additive
automorphism Σ: T → T . We will write X[n] for ΣnX, and will call the
functor Σ the shift functor. A candidate triangle in T is a sequence

X
f→ Y

g→ Z
h→ X[1].

A morphism of candidate triangles is a commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

u v w u[1]

f ′ g′ h′

It is said to be an isomorphism if u, v, w are isomorphisms.

Definition 1.8. Let T be an additive category. A structure of triangulated
category on T is the datum of an additive automorphism Σ: T → T and
of a class of candidate triangles, called distinguished triangles satisfying the
following axioms:

TR1 a) The candidate triangle X
id→ X → 0 → X[1] is distinguished for

any X.
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b) Every triangle isomorphic to a distinguished triangle is itself dis-
tinguished.

c) Every morphism X
f→ Y can be completed to a distinguished tri-

angle X
f→ Y

g→ Z
h→ X[1]. We will cone Z the cone of f .

TR2 A candidate triangle X
f→ Y

g→ Z
h→ X[1] is distinguished if and

only the “rotated” candidate triangle Y
g→ Z

h→ X[1]
−f [1]→ Y [1] is

distinguished.

TR3 Every diagram of the form

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

u v

f ′ g′ h′

u[1]

where the rows are distinguished triangles can be completed (not nec-
essarily in a unique way) to a morphism of triangles by a morphism
Z

w→ Z ′.

TR4 Suppose we have three distinguished triangles

X
f→ Y

u→ Y/X
d→ X[1]

Y
g→ Z

v→ Z/Y
d′→ Y [1]

X
g◦f→ Z

w→ Z/X
d′′→ X[1].

Then there exists a fourth distinguished triangle

Y/X
ϕ→ Z/X

ψ→ Z/Y
θ→ Y/X[1]

making the diagram

X Z Z/Y Y/X[1]

Y Z/X Y [1]

Y/X X[1]

g◦f v θ

f g w ψ

d′

u[1]

ϕ d′′ f [1]

d

u
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commute. Beware that with Y/X we are not indicating the actual
quotient of Y by X (that would not make sense, being T not necessarily

abelian), but just any object completing the morphism X
f→ Y to a

distinguished triangle.

A triangulated category is a category together with the choice of a trian-
gulated structure.

Remark. Axiom TR4 (known as the Verdier axiom, or the octahedral axiom)
has several different forms present in the literature, all equivalent to each
other; The one shown here is the one present in [Lur17], while [GM02] and
[Wei94] have use a different form of it (namely, the one giving the axiom
its “octahedral” name). We do not give here a detailed discussion of it,
referring instead to [Nee01b] and [May66]. Nonetheless, let us record some
facts: because of its complicated form, many have wondered whether the
octahedral axiom is in fact an axiom, or can be in any way derived from
axioms TR1-TR3. To this day the question is open, as there does not exist
either a proof of the fact that the first three axioms imply the fourth, or an
example of a category where TR1-TR3 hold but TR4 does not. This can
be seen as another (very mundane) advantage of enhanced categories over
triangulated categories: in all the theories of enhanced categories, TR4 is a
theorem following from the usually simpler axioms of an enhanced category.

In [May66], the author proves that axiom TR3, the axiom that most
explicitly encodes the non functoriality of the cone, can in fact be deduced
from axiom TR4; We could have then given the definition of a triangulated
category only listing axioms TR1, TR2 and TR4. Nonetheless, since TR3 is
more useful in basic computations, most authors keep it as an axiom.

Remark. If T has the structure of a triangulated category, then T op has a
natural triangulated structure induced by that of T : its shift is given by (the
opposite of) the inverse to Σ, while the distinguished triangles are those of
the form

Z
f← Y

g← X
h← Z[−1]

such that the triangle

X
g→ Y

h→ Z
−f [1]→ X[1]

is distinguished.

Remark. It is noted in [Nee01b] that it is not necessary to require for T
be additive, but it is enough for it to be preadditive (i.e. such that its
hom-spaces have a natural additive structure) and for a zero object to exist:
axioms T1-T4 then imply that finite biproducts always exist.

11



Let’s see what this definition means in the promised example of T =
K(A). In this case, we take the endofunctor Σ to be the shift of complexes;
it is trivial to verify that this is well-defined at the homotopy level. We call
standard triangles those of the form

X
f→ Y

i→ C(f)
p→ X[1]

for some morphism X
f→ Y in C(A), and define the distinguished triangles

to be those isomorphic to a standard triangle. We then have

Theorem 1.9. The category K(A) has a natural structure of triangulated
category, with the shift functor given by the shift of complexes and distin-
guished triangles as above. Similarly, the categories K+(A), K−(A) and
Kb(A) of K(A) all carry a natural triangulated structure.

We do not prove this here, instead referring to [GM02, Theorem IV.1.9]
or [Wei94, Proposition 10.2.4]. The reader can find a sketch of the proof of
an equivalent statement in section 3.4.

Remark. The definition of standard triangle as was given might seem am-
biguous; since f is a morphism in K(A), to take its cone we have to choose a
representative in C(A). A first fix is to say that for any morphism in K(A)
we define a set of standard triangles, one for each representative. Over the
course of the proof we will nonetheless prove that homotopic morphisms have
homotopy equivalent cones; however as usual, the isomorphism between the
cones of homotopic morphisms will depend on the explicit homotopy.

Let us now state a couple of useful definitions.

Definition 1.10. Let T ,S be triangulated categories. An additive functor
F : T → S is said to be exact if there exists a natural isomorphism FΣ ∼= ΣF
(where the first sigma represents the shift in T and the second that of S)
and for every distinguished triangle in T

X → Y → Z → X[1]

the induced candidate triangle in S

FX → FY → FZ → FX[1]

is distinguished.

Definition 1.11. LetA be an abelian category. An additive functor F : T →
A is called homological if for any distinguished triangle in T

X → Y → Z → X[1]

12



the sequence
F (X)→ F (Y )→ F (Z)

is exact. An additive functor G : T op → A is called cohomological if for any
distinguished triangle in T

X → Y → Z → X[1]

the induced sequence
G(Z)→ G(Y )→ G(X)

is exact.

By axiom TR2, if F : T op → A is cohomological and

X → Y → Z → X[1]

is a distinguished triangle, then the whole sequence

· · · → F (Z)[−1]→ F (X)→ F (Y )→ F (Z)→ F (X)[1]→ · · ·

is exact.

Example 1.1. Let A be an abelian category and let Ab be the category of
abelian groups. Consider the functor

H0 : C(A)→ Ab

assigning to a chain complex its homology in degree 0. It sends all homotopy
equivalences to isomorphisms, so it defines a functor

H0 : K(A)→ Ab .

By definition, we have that H0(X[i]) = H iX. Since every triangle is iso-
morphic to a standard triangle and standard triangles come from the exact
sequence

0→ Y
i→ C(f)

p→ X[1]→ 0,

the long exact sequence in homology gives that the functor H0 (and in general
also the functor Hn = H0 ◦ Σn) is homological .

Definition 1.12. A full subcategory S ⊆ T of a triangulated category is
called a triangulated subcategory if the following conditions hold:

• S is closed under isomorphisms;

• S is closed under shifts: if an object X lies in S, so do its shifts X[n].

13



• S is closed under taking cones: if X → Y → Z → X[1] is a distin-
guished triangle and X, Y ∈ S, so does Z.

We will say that a triangulated subcategory is thick if it is closed under
direct summands. If T has small coproducts, we will say that a triangulated
subcategory is localizing if it is thick and closed under small coproducts.
Note that from the third condition it follows that (as long as S is non-
empty), the zero object always lies in S. Similarly, the first condition is
actually redundant, since the shift of any object X can be recovered up to
isomorphism as the cone of the unique morphism X → 0.

Remark. It can be proved ([Nee01b, Proposition 1.6.8]) that if a triangulated
subcategory admits countable coproducts, it is automatically thick. So in
particular, we could remove the thickness hypothesis from the definition of
localizing subcategory.

We now state some basic results about abstract triangulated categories.

Proposition 1.13. Let X be an object in a triangulated category T . Then
the functors

HomT (X,−) : T → Ab and HomT (−, X) : T op → Ab

are respectively homological and cohomological.

Proof. [GM02, Proposition IV.1.3].

In particular, if
X → Y → Z → X[1]

is a distinguished triangle, the composition of any two consecutive arrow is
always the zero morphism. Moreover, a morphism is an isomorphism if and
only if its cone is isomorphic to 0.

Corollary 1.14. Suppose we have a morphism of triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

u v w u[1]

f ′ g′ h′

with both rows distinguished. If u and v are isomorphisms, so is w.

14



As a consequence of this fact, the object completing a given morphism f
to a distinguished triangle (as per axiom TR1) is unique up to isomorphism.
Indeed, suppose that we have two distinguished triangles

X
f→ Y → C → X[1]

and
X

f→ Y → C ′ → X[1]

this gives immediately a commutative diagram

X Y C X[1]

X Y C ′ X[1]

f

f

id id id

that by axiom TR3 can be completed to a morphism of triangles via a mor-

phism C
h→ C ′. By the corollary above, h is an isomorphism. Therefore,

given a morphism in a triangulated category we can talk about its cone
without ambiguity. When doing this however, we should be careful in re-
membering that the isomorphism between two different cones is not unique,
and we will see in Chapter 2 that this non uniqueness is not fixable (for
example by using the axiom of choice) in the triangulated setting.

Proposition 1.15. Let F : T → S be an exact functor between triangulated
categories. If F admits a left or right adjoint G, then G is automatically
exact. In particular, inverses to exact functors are exact.

Proof. [Sta, Lemma 13.7.1.].

1.2.3 Compact generation

Definition 1.16. Let T be a triangulated category. An object X ∈ T is
said to be compact if for every set of objects {Yi} such that their coproduct
exists in T the natural morphism⊕

i

HomT (X, Yi)→ HomT (X,
⊕
i

Yi)

is an isomorphism. We will denote with T c the class of all compact objects
in a triangulated category.
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This is equivalent to saying that any morphism from X to a coproduct
of an arbitrary set of objects factors through a coproduct of a finite number
of those. Compactness is a very strong “smallness” condition: it can be
interpreted as a triangulated analogue to being finite-dimensional.

Definition 1.17. Let S ⊆ T c be a class of compact objects in a triangulated
category. Suppose also that T admits small coproducts. We say that S
compactly generates T if the following condition holds: for any objectX ∈ T ,

X = 0 ⇐⇒ HomT (S[n], X) = 0 for any S ∈ S, n ∈ Z.

In this case we call S a set of compact generators for T .
Using the fact that T admits all coproducts, it can be proved ([SS03,

Lemma 2.2.1]) that the condition that S ⊆ T c generates T is equivalent
to the fact that T coincides with the smallest localizing subcategory con-
taining S. Note that it is also true (see [Nee01b, Proposition 1.16]) that
both products and coproducts in any triangulated category commute with
shifts, and also ([Nee01b, Proposition 1.2.1]) that products and coproducts
of distinguished triangles are again distinguished.

If a triangulated category admits a (small) set of compact generators, we
say that it is compactly generated.

Lemma 1.18. Let T be triangulated category, and suppose that it is gener-

ated by a set R ⊆ T c. Let X
f→ Y be a morphism in T . Suppose that for

any R ∈ R, f induces a bijection

HomT (R,X) ∼= HomT (R, Y ).

Then f is an isomorphism.

Proof. Consider the full subcategory S ⊆ C of objects S such that the map

HomT (S,X)→ HomT (S, Y ).

is an isomorphism. By hypothesis it contains R. If we prove that S is
localizing, we obtain that S = T and are then done by Yoneda’s lemma. It
is obvious that S is closed under isomorphisms. First we prove that S is
closed under arbitrary coproducts: if {Si} ⊆ S, we have

HomT
(⊕

i

Si, X
) ∼= ∏

i

HomT (Si, X) ∼=
∏
i

HomT (Si, Y ) ∼= HomT
(⊕

i

Si, Y
)
,
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so
⊕

i Si ∈ S. Similarly, S is closed under taking cones: take a morphism
g : S1 → S2 between objects of S and let

S1
g→ S2 → P → S1

be a distinguished triangle. We then have, writing Hom instead of HomT , a
commutative diagram

Hom(S2[1], X) Hom(S1[1], X) Hom(P,X) Hom(S2, X) Hom(S1, X)

Hom(S2[1], )Y Hom(S1[1], Y ) Hom(P, Y ) Hom(S2, Y ) Hom(S1, Y )

∼ ∼ ∼ ∼

where the rows are exact and all vertical arrows except the middle one are
isomorphisms. By the five lemma, the middle arrow is an isomorphism and
we are done.

Lemma 1.19. Let T be a triangulated category generated by a set R ⊆ T c.
Let S be any triangulated category, and

F : T → S

an exact functor, and suppose that the following hold:

• FX is compact in S for all X ∈ R

• F is fully faithful when restricted to R, i.e.

HomT (X, Y )→ HomS(FX,FY )

is an isomorphism for all X, Y ∈ R.

Then F is fully faithful.

Proof. Consider the full subcategory A ⊆ T of all objects A such that

HomT (X,A)→ HomS(FX,FA)

is an isomorphism for all X ∈ R. By hypothesis, R ⊆ A. A is a triangulated

subcategory: it is obviously closed under isomorphism, and if A
f→ B is a

morphism between objects of A, we have a triangle

A
f→ B → C → A[1],

17



where C is the cone of C. Therefore, reasoning as in the Lemma above,
C ∈ A. Furthermore, A is localizing: For any set {Ai} ⊆ A, we have

HomT (X,
⊕
i

Ai) ∼=
⊕
i

HomT (X,Ai) ∼=
⊕
i

HomS(FX,FAi) ∼=

∼= HomS(FX,
⊕

FAi),

so
⊕

iAi ∈ A. Note that we have crucially used the fact that X and FX
are compact. Therefore, A = T . Now consider the full subcategory B ⊆ T
of objects B such that

HomT (B,X)→ HomS(FB,FX)

is an isomorphism for all X ∈ T . We have just proved that R ⊆ B, and
repeating the argument above we can prove thatR is a localizing subcategory.
Note now that this time we do not need the assumption that X and FX be
compact, but only the universal property of a coproduct. Then B = T , and
the claim is proved.

Note that both Lemma 1.18 and Lemma 1.19 continue to hold even if R
is not a set.

The following is a fundamental result in the study of triangulated cate-
gories, and is called Brown’s representability theorem for (compactly gener-
ated) triangulated categories.

Theorem 1.20. Let T be a compactly generated triangulated category, and
suppose that it admits small coproducts. Then, an exact functor

F : T → S

admits a right adjoint if and only if it preserves small coproducts.

Proof. [Nee01b, Theorem 8.4.4] is a slightly generalized form of this theorem.

1.2.4 Homotopy colimits

Let T be a triangulated category and

X0
i0→ X1

i1→ X2
i2→ X3 → · · ·

a sequence of morphisms in T . Suppose that the coproduct
⊕

iXi exists in
T . Define a map J2 2Often the

functor J is de-
noted as id− shift.J :

⊕
i

Xi →
⊕
i

Xi

(x0, x1, x2, . . .)→ (x0, x1 − i0(x0), x2 − i1(x1), . . .)
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Definition 1.21. The homotopy colimit of the sequence is defined as any
object hocolim−−−−−→i

Xi completing J to an exact triangle⊕
i

Xi
J→
⊕
i

Xi → hocolim−−−−−→
i

Xi →
⊕
i

Xi[1].

Note that hocolim−−−−−→i
Xi is only defined up to a non unique isomorphism.

Lemma 1.22. Let T be a triangulated category that admits small coproducts,
and let

X0
i0→ X1

i1→ X1
i2→ X2 → · · ·

be a sequence of morphisms in T . Suppose that X ∈ T is a compact object.
Then there is a natural isomorphism

colim−−−→
i

HomT (X,Xi)→ HomT (X, hocolim−−−−−→
i

Xi).

In other words, the functor HomT (X,−) carries homotopy colimits to
colimits of abelian groups.

Proof. [Nee92b, Lemma 1.5].

Example 1.2. If T = K(A), and if a representative for each in is chosen,
one can show that there exists a quasi-isomorphism

hocolim−−−−−→
i

Xi → colim−−−→Xi.

1.3 Localizations, II

In this section we deal with the theory of localizations for triangulated cate-
gories. We will see that in this case those are usually easier to understand.

Let now T be a triangulated category. Recall that a class S ⊆ Mor(T )
is called a multiplicative system if it admits both a calculus of left and right
fractions. We say that a multiplicative system is compatible with the trian-
gulation if the following two conditions are satisfied:

• For every morphism σ ∈ S, σ[i] ∈ S for any i ∈ Z.

• For any morphism of distinguished triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

u v w u[1]

f ′ g′ h′
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with u, v ∈ S, there exists a morphism of distinguished triangles

X Y T X[1]

X ′ Y ′ T ′ X ′[1]

f g h

u v w′ u[1]

f ′ g′ h′

with w′ ∈ S.

Proposition 1.23. Let T be a triangulated category and S ⊆ Mor(T ) a
multiplicative system compatible with the triangulation. Assume further that
T [S−1] has small hom-sets. Then T [S−1] admits a unique triangulated struc-
ture making the quotient functor Q : T → T [S−1] exact.

Proof. [Ver96, Théorème II.2.2.6].

Multiplicative systems of this type arise naturally in two (related) ways. We
begin with the first.

Proposition 1.24. Let F : T → A be a homological (or dually, cohomo-
logical) functor. Then the class of morphisms σ such that F (σ[n]) is an
isomorphism for any n is a multiplicative system compatible with the trian-
gulation.

Proof. [Kra09, Lemma 4.4.2].

As a consequence of this proposition, the class of quasi-isomorphism forms
a multiplicative system compatible with the triangulation of K(A).

Another source of multiplicative systems comes from triangulated sub-
categories.

1.3.1 Verdier localization

To a triangulated subcategory S ⊆ T we can associate the class FS ⊆
Mor(T ) composed of all morphisms X

f→ Y such that the cone of f lies in
S.

Proposition 1.25. For any triangulate subcategory S ⊆ T , the class FS is
a multiplicative system compatible with the triangulation of T .

Proof. [Kra09, Lemma 4.6.1].

It is useful to remember that the class of distinguished triangles in the
quotient is by definition the class of all triangles isomorphisms to images via
the quotient of distinguished triangles in T .
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Definition 1.26. The Verdier quotient T�S is by definition the localization

T�S = T [FS−1]

equipped with the quotient functor Q : T → T�S.

By Proposition 1.23, the quotient T�S carries a unique triangulated struc-
ture making Q exact. Note also that the quotient acts as the identity on
objects. We say that a functor F : T → T ′ between triangulated (or just
additive) categories annihilates a full subcategory S ⊆ T if it sends every
object of S to an object isomorphic to 0. Since the cone of the morphism

0→ X is always isomorphic to X, the quotient T → T�S annihilates S. We
have the following characterization;

Proposition 1.27. Let T be a triangulated category, and S ⊆ T a trian-
gulated subcategory. Any exact functor F : T → T ′ annihilating S factors

uniquely through Q via an exact functor T�S → T
′.

Proof. This is proved in [Kra09, Proposition 4.6.2] using the fact that a
functor annihilating S necessarily inverts all the morphisms in FS.

Remark. Sometimes, Verdier quotients are only considered when S is a thick
subcategory. The reason for this is that when S is thick, then it coincides
with the kernel of the quotient, i.e. the subcategory of objects annihilated
by the quotient; if S is not thick, the kernel of the quotient is the closure of
S under direct summands.

Proposition 1.28. Suppose that T admits small coproducts, and that S is

a localizing subcategory. Then the quotient T�S admits small coproducts and

the quotient functor T → T�S preserves coproducts.

Proof. [Nee01b, Lemma 3.2.10].

Example 1.3. If A is an abelian category, we can define its derived category
D(A) as the localization of K(A) at the quasi-isomorphism or, equivalently,
as the Verdier quotient of K(A) by the acyclic complexes: since the cone of
a morphism is acyclic if and only if the morphism is a quasi-isomorphism,
these definitions coincide. We can also define the bounded below, bounded
above and bounded derived categories D+(A), D−(A) and Db(A) by taking
the localization of K+(A), K−(A) and Kb(A) at the quasi-isomorphisms. A
technical advantage of the derived category over the homotopy category is
that it is possible to prove (see Lemma 3.63) that triangles in the derived
category coincide precisely with short exact sequences. This is not the case
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in the homotopy category: all triangles are by definition isomorphic to the
short exact sequence

0→ B
i→ C(f)

p→ A[1]→ 0

for some morphism A
f→ B, but not all exact sequences induce exact triangles

in the homotopy category.

Often, it is useful to consider the relationship between localizations and
subcategories. Consider a triangulated category T with two triangulated
subcategories T ′ and S. Define S ′ = S ∩ T ′, and we have by definition that
FT ′S ′ = FT (S) ∩ S ′3. The composition 3FT S indicates

the class of mor-
phisms in T whose
cone lies in S.

T ′ ↪→ T → T�S

annihilates S ′ and therefore induces a functor

T ′�S ′ →
T�S.

We then have the following proposition.

Proposition 1.29. Suppose that one of the following conditions hold:

• Any morphism from an object of S to an object of T ′ factors through
an object of S ′;

• Any morphism from an object of T ′ to an object of S factors through
an object of S ′.

Then the natural functor
T ′�S ′ →

T�S.

is fully faithful.

Proof. [Kra09, Lemma 4.7.1].

Definition 1.30. Take T , S as above. We then define the two full subcate-
gories

S⊥ = {Y ∈ T |HomT (X, Y ) = 0 ∀X ∈ S}

and
⊥S = {X ∈ T |HomT (X, Y ) = 0 ∀Y ∈ S}.

We call S⊥ and ⊥S orthogonal subcategories.

We have the following useful characterization:
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Proposition 1.31. Let Y ∈ T . The following are equivalent:

• Y ∈ S⊥;

• The quotient functor induces a bijection

HomT (X, Y ) ∼= HomT�S
(X, Y )

for any X ∈ T .

Dually, for an an element X ∈ T the following are equivalent:

• X ∈ ⊥S;

• The quotient functor induces a bijection

HomT (X, Y ) ∼= HomT�S
(X, Y )

for any Y ∈ T .

Proof. [Kra09, Lemma 4.8.1]

1.3.2 Bousfield localization

We are now ready to study the existence of adjoints of the quotient functor.

Proposition 1.32. Let T be a triangulated category, and S a thick subcate-
gory. The following are equivalent:

• The quotient functor T → T�S admits a right adjoint;

• For each X ∈ T there exists a distinguished triangle

X ′ → X → X ′′ → X ′[1]

with X ′ in S and X ′′ in S⊥.

Dually, the following are equivalent:

• The quotient functor T → T�S admits a left adjoint;

• For each X ∈ T there exists a distinguished triangle

X ′ → X → X ′′ → X ′[1]

with X ′ in ⊥S and X ′′ in S.
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Furthermore when they exist, both the left and right adjoint to the quotient
are fully faithful.

Proof. We refer to [Kra09, Proposition 4.9.1] for the details, but we give a
description of the adjoint functor: let’s consider the first case. To construct

the adjoint, we fix for each X ∈ T�S an exact triangle in T

X ′ → X → X ′′ → X[1]

as above. Define then
µ : T�S → T

by setting µ(X) = X ′′. This might appear strange, since we have been ham-
mering the reader with warnings about how constructions involving triangles
are not canonical. However, the specific form of this triangle (namely, the fact
that X ′ lies in S), makes the construction work. Indeed, since X ′ ∈ S, the

morphism X → X ′′ is an isomorphism in T�S. Therefore, using Proposition
1.31 we have natural bijections

HomT�S
(X, Y )

∼→ HomT�S
(X ′′, Y ′′)

∼→ HomT (µ(X), µ(Y ))

which show ρ to be a fully faithful functor. Finally, again Proposition 1.31
proves that ρ is a right adjoint to the quotient. In the case of the left adjoint,
one can set λ(X) = X ′ with X ′ as in the second triangle.

When the quotient functor T → T�S admits a right adjoint, it is called
a Bousfield localization; when it admits a left adjoint, a Bousfield colocaliza-
tion.

We conclude this section with a different way to find (right) adjoints to
the quotient functor, via Brown’s representability theorem.

Remark. In the case illustrated above, the existence of an adjoint to the
quotient guaranteed that the localization had small hom-sets. If we want to
apply Theorem 1.20 to the quotient functor, we are forced to suppose this
fact. This is not particularly stringent, since several criteria for the smallness
of the hom-sets of a Verdier quotient exist, see for example [LO10, Theorem
1.21] and the references there.

Proposition 1.33. Let T be a compactly generated triangulated category
admitting small coproducts. Let S ⊆ T be a localizing subcategory, and

assume that the quotient T�S is a category (i.e. has small hom-sets). Denote

with π : T → T�S the quotient functor. Then the following hold:

a) The quotient functor π admits a fully faithful right adjoint µ;
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b) If for every compact object Y ∈ T the object π(Y ) is compact in T�S,
then µ preserves coproducts.

c) If for every compact object Y ∈ T the object π(Y ) is compact in T�S
and T is compactly generated by a set R ⊆ T c, then T�S is generated
by π(R).

Proof. Since S is localizing, π preserves coproducts; therefore, by Theorem
1.20 it admits a right adjoint µ. By Proposition 1.32, µ is fully faithful. This
proves a). To prove b), observe that if π(Y ) is compact we get

HomT�S
(Y, µ

(⊕
i

Xi

)
) ∼= HomT (π(Y ),

⊕
i

Xi) ∼=
⊕
i

HomT (π(Y ), Xi) ∼=

∼=
⊕
i

HomT�S
(Y, µ(Xi)) ∼= HomT�S

(Y,
⊕

µ(Xi))

for all {Xi} ⊆ T�S. Now Lemma 1.18 shows that the natural morphism⊕
i

µ(Xi)→ µ
(⊕

i

Xi

)
is an isomorphism. Finally, to prove c), observe that for any X ∈ T�S, if

HomT�S
(π(Y ), X[n]) = 0

for any Y ∈ R and n ∈ Z, then

HomT (Y, µ(X)[n]) = 0

for any Y ∈ R and n ∈ Z. Since R generates T , this implies that µ(X) = 0.
Since µ is fully faithful, X = 0.

1.4 Model categories

A different, and much more far reaching, approach to the theory of local-
izations is via Quillen’s model categories. Roughly, a model structure on
a category C is the datum of three subclasses of morphisms: weak equiv-
alences, fibrations (that can be considered “well behaved surjections”) and
cofibrations (“well behaved injections”) all of which have to satisfy some
properties. Having a model structure on a category will allow us (among
other things) to give a very explicit description of the localization of C at the
weak equivalences, guaranteeing that the hom-spaces form a small set.

In this section, C will represent a fixed complete and cocomplete category.
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Definition 1.34. A morphism f in C is a retract of a morphism g if there
exists a commutative diagram of the form

A C A

B D B.

f fg

idA

idB

Definition 1.35. Suppose that i : A→ B and p : X → Y are morphisms in
C. We say that i has the left lifting property with respect to p and p has the
right lifting property with respect to i if for any diagram of the type

A X

B Y

i

f

g

p
h

there exists a morphism h : B → X making the whole diagram commute.

Definition 1.36. A model structure on C is defined as the datum of three
classes of morphisms called fibrations, cofibrations and weak equivalences
satisfying the following conditions:

1. If f and g are two composable morphisms such that two of f , g and gf
are weak equivalences, so is the third;

2. Fibrations, cofibrations and weak equivalences are closed under re-
tracts;

3. Call acyclic fibrations (some texts call these trivial fibrations) maps
that are both fibrations and weak equivalences, and acyclic cofibra-
tions maps that are both cofibrations and weak equivalences. Then,
we require acyclic cofibrations to have the left lifting property with re-
spect to fibrations and cofibrations to have the right lifting property
with respect to acyclic fibrations;

4. Any morphism A
f→ B can be factored in two ways; either as

A
i→ X

p→ B

where i is a cofibration and p is an acyclic fibration, or as

A
i′→ X

p′→ B

where i′ is an acyclic cofibration and p′ is a fibration.
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It is customary (as seen for example in [Hov07]) to require for the fac-
torization of 4. to be functorial in an appropriately defined sense. This does
not follow from the other axioms, but is a very mild conditions and to this
day are not known examples where it does not hold. We do not define it in
detail, but we implicitly suppose it, as will be clear later. A model category
is a (complete and cocomplete) category together with the choice of a model
structure.

Example 1.4. The prototypical example of a model category is the category
Top of topological spaces, with the weak equivalences taken to be the weak
homotopy equivalences, fibrations the Serre fibrations and cofibrations the
maps having the left lifting properties with respect to acyclic fibrations.

Remark. Those shown here were not Quillen’s original axioms. Besides the
functorial factorizations, Quillen only required finite limits and colimits to
exist. Furthermore, the axioms we gave here were considered by Quillen the
axioms of a closed model category. In the following years, the distinction
between closed and general model categories has been dropped, with the
recent authors giving the same definitions that we gave.

Since a model category admits all limits and colimits, in particular it
admits an initial object 0 and a final object ∗.

Definition 1.37. An object X in a model category is said to be fibrant if
the unique morphism X → ∗ is a fibration. X is said to be cofibrant if the
unique morphism 0→ X is a cofibration.

Thanks to condition 4, by factoring the morphism X → ∗ as

X → X ′ → ∗

where the first arrow is an acyclic cofibration and the second is a fibration we
get, for any object X, an fibrant object X ′ with a weak equivalence X ′ → X.
By using the functorial factorizations, we get a fibrant replacement functor

C → C
X → RX

that assigns to each object X an object RX that admits a weak equivalence
X → RX. Dually, by factoring the map 0 → X, we get a cofibrant re-
placement functor G, assigning to each object Y a cofibrant object QY that
admits a weak equivalence Y → QY . We will call QX and RX, together
with the weak equivalences X → QX and X → RX cofibrant and fibrant
replacements for X.
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Denote with W the class of weak equivalences. A model structure on
C allows us to give a very concrete description of the localized category
C[W−1]. This generalizes the case of the category Top: to localize it at the
weak equivalences, one first uses the existence of CW approximations to
substitute any space with a weakly equivalent CW complex. Then, one uses
Whitehead’s theorem to prove that, since any weak equivalence between CW
complexes is a homotopy equivalence, the category localization of Top can
be realized as the category of CW complexes where morphisms are homotopy
classes of continuous maps. Here, we have used “can be realized” in a not
very precise sense: the category obtained in this way is not exactly the
localization of Top at the quasi-equivalences, since it has strictly less objects.
It is, however, equivalent to it.

We want to give a similar process for an arbitrary model category C. In
this case, the role of “good objects” (i.e. CW complexes) will be taken by
bifibrant objects, objects that are both fibrant and cofibrant. It is less clear
what the correct notion of homotopy equivalence of morphisms is.

Definition 1.38. Let B be an object of C. A cylinder objectB ∧ I for B is
a factorization of the natural “folding” map

B
∐

B → B

in a cofibration
B
∐

B → B ∧ I

followed by a weak equivalence

B ∧ I → B.

Dually, a path objectBI for B if a factorization of the natural “diagonal”
map

B → B ×B

into a weak equivalence
B → BI

followed by a fibration
BI → B ×B.

By condition 4 in the definition of model category, it follows that cylinder
and path objects always exist.

Definition 1.39. Let f, g : X → Y be morphisms in a model category. A left
homotopy from f to g is a morphism H : X∧I → Y for some cylinder object
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X ∧ I for X such that, calling i0 and i1 the two natural maps X → X
∐
X,

the composition

X
i0→ X

∐
X → X ∧ I H→ Y

equals f and the composition

X
i1→ X

∐
X → X ∧ I H→ Y

equals g. Dually, a right homotopy between f and g is a map K : X → Y I

for some path object Y I for Y such that, calling p0 and p1 the two natural
projections Y × Y → Y , the composition

X
K→ Y I → Y × Y p0→ Y

equals f and the composition

X
K→ Y I → Y × Y p1→ Y

equals g.

Two morphisms f and g are said to be homotopic if they are both left

and right homotopic; in that case, we write f ∼ g. A morphism X
f→ Y is a

homotopy equivalence if there exists a morphism Y
g→ X such that fg ∼ idY

and gf ∼ idX . In the case of topological spaces, both left and right homotopy
coincide with the usual definition of homotopy between continuous maps. In
the general case, those are not always so well-behaved and in order to use
them meaningfully we have to restrict the objects we apply them to.

Proposition 1.40. Suppose that X, Y are bifibrant objects. Then the rela-
tions of left and right homotopy on HomC(X, Y ) coincide, and are an equiv-
alence relation compatible with the composition, in the sense that if f ∼ g
then fh ∼ gh and lh ∼ lg for any f, l composable with f and g.

Proof. [Hov07, Proposition 1.2.5]

Proposition 1.41. A morphism X
f→ Y between bifibrant objects is a weak

equivalence if and only if it is a homotopy equivalence.

Proof. [Hov07, Proposition 1.2.8]

Denote with Ccf the full subcategory of C spanned by bifibrant objects. By

Proposition 1.40, we can define the category Ccf�∼ having the same objects
of Ccf and homotopy classes of morphisms in C as morphisms. As a corollary
of Proposition 1.41, we get
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Corollary 1.42. There is an equivalence of categories

j : Ccf�∼ → Ccf [W−1].

where j can be taken to be the identity on objects.

Proof. [Hov07, Corollary 1.2.9]

The existence of the replacement functors gives the following

Proposition 1.43. The inclusion

Ccf ↪→ C

induces an equivalence of categories

Ccf [W−1]
∼→ C[W−1].

Proof. [Hov07, Theorem 1.2.10]

Therefore, the localized category C[W−1] is equivalent to the category
Ccf�∼ which, in particular, has small hom-sets (i.e. is a category according
to our convention). As in the case of topological spaces, one has to be wary

of the fact that Ccf�∼ has strictly less objects than C[W−1], and to obtain an
explicit description of the hom-spaces of C[W−1] one has to choose a quasi-
inverse to the equivalence induced by the inclusion. This can be done, for
example, using the replacement functors.

Proposition 1.44. There are natural isomorphisms

HomC(QRX,QRY )�∼ ∼= HomC[W−1](X, Y ) ∼= HomC(RQX,RQY )�∼

for any X, Y ∈ C.

Proof. This is again [Hov07, Theorem 1.2.10]

This implies that any morphism in C[W−1] between two objects can be
represented either via a zig-zag

X → RX ← QRX
f→ QRY → RY ← Y

for some morphism f , or via a zig-zag

X ← QX → RQX
g→ RQY ← QY → Y
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for some morphism g. Note that, although we are representing morphisms
via zig-zags, all the arrows except the middle one depend only on X and Y ,
so the class of all possible zig-zags between two fixed objects forms a small
set.

A case that will be of interest to us is that where all the objects in C are
fibrant; in that case, the functor R can be taken to be the identity and any
morphism in C[W−1] can be represented via a zig-zag of the form

X ← QX
f→ QY → Y

or, composing the two arrows, as a roof

X ← QX
f ′→ Y

where X ← QX is a cofibrant replacement for X, so in particular a quasi-
equivalence.

1.5 Notes for Chapter 1

The calculus of fractions in relation to the localization of a category was in-
troduced by Gabriel and Zisman in [GZ67]; Triangulated categories were first
developed by Verdier in his thesis [Ver96] for their applications in algebraic
geometry; at the same time, similar concepts appeared in algebraic topology
from the work of Puppe. Their study was later systematized by Neeman in
[Nee01b]. Model categories were invented by Quillen (see [Qui67]) as tools
in homotopy theory: a very nice introduction is the paper [DS95], while a
more comprehensive source is [Hov07].
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Chapter 2

Interlude

There are several reasons for which oftentimes triangulated categories are not
an optimal environment to work in. One of the main issues - and the cause
of most of the others - is related to the fact that the cone of a morphism
cannot be defined in a functorial way. In fact, it is not hard to see that as
soon as a triangulated category is “interesting” (that is, non-abelian) it is
never possible to define a cone functor. Postponing the formal definitions,
the above comment is made precise by the following fact:

Proposition 2.1. Let T be an idempotent complete triangulated category.
If T admits functorial cones, then T is split abelian i.e., an abelian category
in which all exact sequences split.

There are several constructions that are not possible without functorial
cones: for example, it is not possible to give a sensible triangulated structure
on a functor category with triangulated target. In fact, letting S be any
category and T a triangulated category, giving a triangulated structure to
Fun(S, T ) would imply giving a notion of a cone of a natural transformation

F
η→ G between two functors. The only way to exploit the triangulated

structure of T to define such an object is to consider, for any object x ∈ S,
the induced morphism

F (X)
ηx→ G(X)

and to complete it to a triangle

F (X)
ηx→ G(X)→ Cone(ηx).

However, since the assignment of the cone was not functorial to begin with,
this construction does not give in general a well defined functor Cone(η) : S →
T : in particular, given a morphism x

f→ y there is no natural morphism1 1A morphism
always exists, but
it is not unique nor
the choice can be
made canonical in
any way.

Cone(ηx) → Cone(ηy). This difficulty in giving Fun(S, T ) a triangulated
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structure is not due to lack of imagination: even in very simple cases, such
a structure may not exist. This is exemplified by the proposition:

Proposition 2.2. Let A be a category and suppose that A has a zero object.
If Mor(A) admits a triangulated structure, then A = 0. In particular, the
category of morphism in a triangulated category never admits a triangulated
structure.

The conditions imposed on A are minimal, as the proposition works even
without supposing A to be additive: this is less surprising that it may seem,
since in the hypotheses of the proposition A can be realized as a full subcat-
egory of Mor(A) via the functor that assigns to an object a the morphisms
a→ 0, thus always inheriting from Mor(A) an additive structure.

Similarly, it is in general very hard to define a reasonable notion of tensor
product of triangulated categories, as noted in [BLL04].

The rest of this section is devoted to proving and expanding on those two
propositions. This is not integral to the rest of the thesis, so the reader can
feel free to skip it.

2.1 Failure of Mor(A) to have a triangulated

structure

Let’s begin our discussion with an easy lemma.

Lemma 2.3. In a triangulated category, all epimorphisms split. That is,
given an epimorphism

f : A→ B

in a triangulated category T , there exists a morphism g : B → A such that
the composition

B
g→ A

f→ B

is equal to the identity.

Proof. Complete f to an exact triangle A
f→ B

π→ C → A[1]. Since πf = 0
and f is an epimorphism, π = 0. Applying now the homological functor
Hom(B,−) we get an exact sequence of abelian groups

Hom(B,A)
f∗→ Hom(B,B)

π∗→ Hom(B,C).

Since π = 0 it follows that π∗ = 0, and therefore f∗ is surjective. At this
point it is enough to observe that the map f∗ is defined as the composition
with f , and that then any morphism g ∈ Hom(B,A) whose image is the
identity of B has the desired property.
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Definition 2.4. Let A be a category. The category Mor(A) is the category
whose objects are triples (x, y, f) such that x, y ∈ Ob(A), f ∈ Hom(x, y)
and whose morphisms between two objects (x, y, f) and (x′, y′, f ′) are com-
mutative squares

x y

x′ y′

f

f ′

α β

Equivalently, Mor(A) can be defined as the functor category Fun(• → •,A),
where • → • is the category with two objects and only one non-identity
morphism between them.2 The category • → • is known as walking arrow, 2The definition

is not symmetric:
there exists one
morphism from the
first object to the
second, but none
from the second to
the first.

or interval category.

We can now prove Proposition 2.2.

Proof or Proposition 2.2. Let a be an object of A. Consider the diagram

a a

a 0

ida

ida

In the category Mor(A), it represents a morphism α between the objects

a
id→ a and a → 0; α is an epimorphism, since both of its components are.

Then if Mor(A) admits a triangulated structure, by Lemma 2.3 there exists

a morphism β between a→ 0 and a
id→ a such that αβ = Id. Explicitly, this

means that there exists a commutative diagram

a 0

a a

a 0

ida

ida

f

such that the composition of both columns are the identities of a and 0
respectively. This implies that the identity morphism of a factors through
the zero object and that thus a = 0. Since a was arbitrary, A = 0.
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2.2 Non-functoriality of cones

Definition 2.5. Let C be a category, I a small category and F : I → C a
functor, seen as diagram of shape I in C. A weak colimit for F is a cocone3 3Here by

cocone under a
diagram we mean
a natural trans-
formation between
the functor F
and the constant
functor ∆x, and
not anything
related to cones
in a triangulated
category.

F → x under the diagram F such that for any other cocone F → y there
exists a (not necessarily unique) morphism x → y through which F → y
factors.

F

x y.

In other words, a weak colimit is an object that satisfies the existence prop-
erty of a colimit but not necessarily the uniqueness. Dually, it is possible to
define a weak limit.

Although in practice we will ignore this fact, it is important to underline
that in general a weak colimit is not unique, and two weak colimits of the
same diagram may not be isomorphic.

Example 2.1. A weakly initial object is the weak colimit of the empty
diagram. Concretely, a weakly initial object is an object x such that for any
object y there exists a (not necessarily unique) morphism x→ y.

Example 2.2. Let T be a triangulated category. Recall that we had defined

the cone C(f) of a morphism f : A
f→ B as any object C(f) with morphisms

B → C(f) and C(f) → A[1] such that A
f→ B → C(f) → A[1] is an exact

triangle. We affirm that B → C(f) is a weak cokernel of f , i.e. a weak
colimit of the diagram

A B

0 .

f

This means that for any commutative diagram

A B

0 C(f)

D

f

g
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(that is, for any morphismB
g→ C such that gf = 0) there exists a compatible

morphism C(f) → D. This follows easily from axiom TR3: consider the
diagram

A B C(f)

0 D D.

f

g

idD

Since the composition A
f→ B

g→ D vanishes the first square commutes, and
since both rows can be completed to an exact triangle, by axiom TR3 there
exists a compatible morphism C(f) → D. This proves that C(f) is a weak
cokernel.

Notice that in most cases the induced morphism is in fact not unique,
although as we have seen, two cones of the same morphism are always (not
canonically) isomorphic.

Dually, a shifted cone C(f)[−1]→ A is easily seen to be a weak kernel.

Definition 2.6. A functorial weak limit (x, γ) of a diagram F is a weak
colimit F → x equipped with the choice for any cocone F → y of a mor-
phism γF→y : x→ y factoring F → y such that the choice of factorization is
functorial: for any morphism of cocones

F

y z
f

the chosen factorizations make the triangle below commute.

x z

y
f

γF→y

γF→z

Again, one can give the dual definition of a functorial weak limit.

Definition 2.7. A category C is said to be idempotent complete if all idem-
potents in C split: that is, for any morphism e : x → x such that e2 = e
there exist an object y and a factorization x

r→ y
s→ x such that sr = e and

rs = idy.
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Example 2.3. The category VectK of vector spaces over a field K is idem-
potent complete: for any endomorphism of a vector space T : V → V such

that T 2 = T the factorization V
T→ Im(T ) ↪→ V gives the desired splitting.

Similarly, all abelian categories are idempotent complete.

The notion of functorial weak colimit is an intermediate one between
that of weak colimit and of colimit: the uniqueness of the factorization always
implies its functoriality. However, as the next propositions shows, a functorial
weak colimit is much closer to a colimit in the classical sense than a weak
colimit.

Proposition 2.8. Let C be an idempotent complete category. If C admits a
functorial weakly initial object then C admits an initial object.

Proof. Let (i, γ) be a functorial weakly initial object. By definition i is

equipped with a morphism i
γi→ i. To begin with, we shall prove that if

γi = idi then i in initial. Indeed, for any c ∈ C and for any morphism i
α→ c

the triangle

i i

c

γi

γc α

is commutative. Then, if γi is the identity, α = γc and i is initial. In order to
deal with the general case, we see that by the commutativity of the triangle

i i

i

γi

γi
γi

γi is idempotent. Therefore there exist an object i′ and a splitting i
a→ i′

b→ i
such that ab = idi′ and ba = γi. We will now prove that i′ is an initial
object. It is clearly a weakly initial object, and provided with the choice of
factorizations δi = γib it becomes a functorial weakly initial object as well.
By considering the diagram

i′ i

i′

δi

δi′ a

we get that δi′ = aδi. Since δi is by definition equal to γib and that γi = ba,
we find δi′ = aδi = aγib = abab = idi′ , therefore i′ is an initial object.
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Corollary 2.9. Suppose C is an idempotent complete category, I a small
category and F : I → C a diagram of shape I. If C admits a functorial weak
colimit (x, γ) of F than C admits a colimit of F .

Proof. The category of cocones under F inherits from C the property of being
idempotent complete: at this point, the claim follows from Lemma 2.8 and
the fact that a functorial weak colimit is a functorial weakly initial object
in the category of cocones under F while a colimit is an initial object in the
same category.

Of course, the same is true for limits. Let us now give the precise definition
of what means for a triangulated category to have functorial cones (in order
to show that they usually don’t exist).

Definition 2.10. Let T be a triangulated category. The category of exact
triangles in T is the category τ(T ) whose objects are exact triangles and
whose morphisms are morphisms of triangles.

Definition 2.11. A cone functor in a triangulated category is a functor

C : Mor(T )→ τ(T )

of the form

C(X
f→ Y ) = X

f→ Y
a(f)→ K(f)

b(f)→ X[1]

such that for any morphism in Mor(T )

X Y

X ′ Y ′

f

f ′

h k

the induced diagram is of the form

X Y K(f) X[1]

X ′ Y ′ K(f ′) X ′[1]

f

f ′

h k

a(f)

a(f ′)

Ch,k
K

b(f)

b(f ′)

h[1]

for some Ch,k
K : K(f) → K(f ′). A triangulated category is said to admit

functorial cones if a cone functor exists.
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Of course the object K(f) and the morphisms a(f) and b(f) together
with the morphism Ch,k

K define functors to appropriate categories as well,
and the functor C can be reconstructed from those. While we defined a cone
functor as a whole triangle, if it will be clear from the context we will refer to

either the object K(f), the morphism Y
a(f)→ K(f), or even the full triangle

as the cone of f .
We can now give the proof of Proposition 2.1.

Proof of Proposition 2.1. The proof is slightly long but very straightforward,
and is a basic consequence of Proposition 2.2. Let’s first prove that if T
admits functorial cones then it admits kernels and cokernels. Suppose that
there exists a cone functor C : Mor(T )→ τ(T ). Suppose for simplicity also
that

C(0→ A) = 0→ A
id→ A→ 0

for every object A; this is not restrictive since any two cones are always

isomorphic. Let us now prove that Y
a(f)→ K(f) is in fact a functorial weak

cokernel, which will imply that it is a cokernel. We have already seen in
Example 2.2 that it is a weak cokernel, so we only need to see that it is
functorial according to Definition 2.6. Following Example 2.2, we see that
for any morphism B

g→ D such that gf = 0 we get a morphism in Mor(T )

A B

0 D

f

g

which, through the functor C, induces a diagram

A B K(f)

0 D D.

f

g

a(f)

idD

C0,g
K

Define factorizations (as in Definition 2.6) γg : K(f)→ D equal to C0,g
K . The

claim now reduces to proving that for two given morphisms l : B → D and
s : B → D′ such that lf = sf = 0 and any morphism r : D → D′ such that
s = rl the induced triangle

K(f)

D D′
γl

γs

r
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commutes. Consider the commutative diagram

A B

0 D′

0 D

f

sl

r

that represents a commutative triangle in Mor(T ), by considering the hori-
zontal arrows as vertices of the triangle. Applying the functor C to such a
triangle we get the diagram

A B K(f)

0 D′ D′

0 D D .

f

s

r

l

idD′

idD

r

γl
γs

The commutativity of the rightmost triangle gives what we were looking for.
We have then proved that T has cokernels and, dually, that it has kernels. At
this point, since by Proposition 2.3 all epimorphisms and monomorphisms in
T split it follows that all monomorphisms are kernels and all epimorphisms
are cokernels, so T is abelian. By the splitting lemma, since all monomor-
phisms (and all epimorphisms, but only one of those classes is sufficient)
split, all exact sequences split.

Here the condition for T to be idempotent complete is necessary, but not
very restrictive; it can be proved that any triangulated category that admits
countable coproducts is idempotent complete ([Nee01b, Proposition 1.6.8]),
and that any triangulated category can be realized as a full triangulated
subcategory of an idempotent complete triangulated category.

2.3 Notes for Chapter 2

Proposition 2.1 has been known since the introduction of triangulated cate-
gories, in particular being proven in Verdier’s original thesis ([Ver96, Propo-
sition 1.2.13]). This particular proof, only requiring the category to have
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split idempotents instead of countable coproducts is taken from the short
note [Ste18]. Proposition 2.2 comes from this mathoverflow answer, and
apparently is due to Paul Balmer.
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Chapter 3

Dg-categories

3.1 Elements of enriched category theory

In this section we mainly give some useful definition. We begin with the
definition of a monoidal category. Roughly speaking, a monoidal category is
a category endowed with a sensible notion of a (functorial) tensor product.

Definition 3.1. A monoidal category is a category K equipped with the
following extra data:

• a functor −⊗− : K ×K → K, usually called tensor product;

• An object 1 ∈ K, called the identity object;

• a natural isomorphism a : ((−⊗−)⊗−)
∼−→ (−⊗ (−⊗−)), called the

associator;

• Two natural isomorphisms

λ : 1⊗− ∼−→ Id

ρ : −⊗1
∼−→ Id;

all satisfying the following compatibility conditions: denoting with

aX,Y,Z : (X ⊗ Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z)

λX : X ⊗ 1
∼−→ X

ρX : 1⊗X ∼−→ X
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the components of the given natural transformations, we require the following
diagrams to commute.

((X ⊗ Y )⊗ Z)⊗W (X ⊗ Y )⊗ (Z ⊗W )

(X ⊗ (Y ⊗ Z))⊗W X ⊗ (Y ⊗ (Z ⊗W ))

X ⊗ ((Y ⊗ Z)⊗W ))

aX,Y,Z⊗idW

aX⊗Y,Z,W

aX,Y,Z⊗W

aX,Y⊗Z,W

idX⊗aY,Z,W

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

aX,1,Y

λX⊗idY idX⊗ρy

Example 3.1. The category VectK of vector spaces over a field K, equipped
with the tensor product of vector spaces and with K (considered as a vector
space over itself) as the identity is a monoidal category.

Example 3.2. The category Set of sets, equipped with the cartesian product
as a tensor product and with any singleton as the identity is a monoidal
category.

Monoidal categories are useful because (among other things) they make it
possible to define enriched categories, i.e. categories where the hom-spaces,
instead of belonging to the category Set, belong to an arbitrary monoidal
category; the existence of the tensor product allows to define an appropriate
notion of compatibility between the composition of morphisms and the in-
ternal structure of the monoidal category: for example, when requiring the
hom-spaces of a category to be vector spaces, one would certainly require the
composition of morphisms to be linear in either variable.

Definition 3.2. Let K be a monoidal category. A category C enriched over
K (or K-category) is the datum of

• A collection of objects Ob(C);

• For every two objects X, Y ∈ Ob(C), a hom-object C(X, Y ) ∈ Ob(K);

• For every three objects X, Y, Z ∈ Ob(C) a morphism in K

◦X,Y,Z : C(Y, Z)⊗ C(X, Y )→ C(X,Z),

representing the composition of morphisms;
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• For each object X in C, a morphism jX : 1 → C(X,X), representing
the identity morphism.

Satisfying the associativity and unity axioms expressed by the commutativity
of the following diagrams:

(C(Z,W )⊗ C(Y, Z))⊗ C(X, Y ) C(Z,W )⊗ (C(Y, Z)⊗ C(X, Y ))

C(Y,W )⊗ C(X, Y ) C(Z,W )⊗ C(X,Z)

C(Z,W )

aC(Z,W ),C(Y,Z),C(X,Y )

idC(Z,W )⊗◦X,Y,Z◦Y,Z,W⊗idC(X,Y )

◦X,Y,W ◦X,Z,W

C(Y, Y )⊗ C(X, Y ) C(X, Y ) C(X, Y )⊗ C(X,X)

1⊗ C(X, Y ) C(X, Y )⊗ 1.

◦X,Y,Y ◦X,X,Y

jY ⊗idC(X,Y ) ρC(X,Y ) λC(X,Y )

idC(X,Y )⊗jX

A K-category C is said to be small if Ob(C) form a set (and not a proper
class). The notion of K-enriched category is very flexible; taking K to be
respectively the category Set of sets, Cat of categories1 , Ab of abelian 1Disregarding

set-theoretic issues.groups and k-Mod of modules over a commutative ring k, we find the notions
of ordinary category, (strict) 2-Category, preadditive category and k-linear
category.

Not very relevant but interesting example. Recall that a partially or-
dered set can be considered as a category by letting the hom spaces be
composed of a single arrow x→ y if x ≤ y and none otherwise. Consider the
partially ordered set [0,∞]. Addition, extended in the obvious way to ∞,
gives to [0,∞] the structure of a monoidal category, with 0 as the unit. A
(small) category enriched over this monoidal category is then composed of:

• A set X;

• For any x, y ∈ X, a number d(x, y), eventually infinite;

• For any x, y, z ∈ X, an arrow d(x, y) + d(y, z) → d(x, z); this means
just that d(x, y) + d(y, z) ≤ d(x, z).

satisfying the unital and associative condition: associativity is trivially sat-
isfied, while the unity condition reads: d(x, x) = 0 implies x = 0. The reader
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will then easily recognize that a category enriched over [0,∞] is nothing but
a - slightly generalized to be non necessarily symmetric and to admit infinite
distances - metric space.

It is now easy to give the definition of a K-functor between K-categories.

Definition 3.3. Let A and B be K-categories, for a given monoidal category
K. A K-functor T : A → B is the datum of a map T : Ob(A) → Ob(B)
together with, for any objects X, Y in Ob(A), a map TX,Y : A(X, Y ) →
B(X, Y ) in K, subject to the compositions and unity conditions expressed
by the commutativity of the diagrams

A(Y, Z)⊗A(X, Y ) A(X,Z)

B(TY, TZ)⊗ B(TX, TY ) B(TX, TZ)

◦X,Y,Z

TX,ZTY,Z⊗TX,Y

◦TX,TY,TZ

A(X,X)

1

B(TX, TX).

jX

jY

TX,X

The compositions and identity morphisms of A and B have been denoted
with the same symbol, but this should not create any confusion since there
is no possible ambiguity.

One can also define a notion of K-natural transformation between K-
functors (see for example [Kel82, Section 1.2]) but those are slightly more
involved to define abstractly, so we will only define them in the case that is
relevant to this thesis. Indeed, from this point on we will focus on a specific
monoidal category, the category C(k) of chain complexes of k-modules.

3.1.1 The monoidal category C(k)

From now on, we will let k be a fixed commutative ring with unity. We give
some definitions in order to fix the notations.

Definition 3.4. A graded k-module is a k-module V together with a decom-
position

V =
⊕
i∈Z

V i.
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We will call the elements x ∈ V n homogeneous elements of degree n.

Definition 3.5. A graded morphism of degree n between graded modules V
and W is a morphism of k-modules f : V → W such that f(V i) ⊆ W i+n for
every i ∈ Z.

Notice that, since a graded module is defined as a coproduct, the datum
of a graded morphism between two graded modules coincides that that of
the (infinite) collection of maps between homogeneous components.

Definition 3.6. A chain complex of k-modules is a graded k-module A
together with a fixed morphism dA : A → A of degree 1 such that d2 = 0,
called the differential. Of course, a chain complex of k-modules is nothing
but a chain complex in the abelian category of k-modules.

When there is no risk of ambiguity we will often omit the subscriptA when
writing the differential, in order to simplify the notation. In the following
when we write chain complex, unless something else is specified, we will
always mean chain complex of k-modules. If A is a chain complex, we can
define the associated graded modules

• Z∗A = Ker d ⊆ A, whose homogeneous elements of degree n are called
n-cycles.

• B∗A = Im d ⊆ A, whose homogeneous elements of degree n are called
n-boundaries.

• H∗A = Z∗A/B∗A, called the homology of A.

Of course, the grading of Z∗A and B∗A is induced by that of A and the
definition of H∗A is made possible by the fact that d2 = 0 (and hence B∗A ⊆
Z∗A).

Definition 3.7. A chain map between two chain complexes A,C is a degree 0
morphism of graded modules f : A→ C such that df = fd. An isomorphism
of chain complexes is a chain map that admits an inverse.

Remark. A chain map f : A→ C restricts to a degree 0 morphism of graded
modules

f : Z∗A→ Z∗C

such that f(B∗A) ⊆ B∗C. Therefore, it also induces a degree 0 morphism
H∗A→ H∗C.
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We will denote with C(k) the category whose objects are chain complexes
and whose morphisms are chain maps, and with Gr(k) the category whose
objects are graded modules and morphisms are degree 0 morphisms of graded
modules.

Definition 3.8. A chain complex A is said to be acyclic if H∗A = 0. Simi-
larly, a chain map A→ B is a quasi-isomorphism if it induces an isomorphism
H∗A→ H∗B.

Definition 3.9. The shifted chain complex A[n] is defined as the complex
having

A[n]i = An+i

and
dA[n] = (−1)ndA.

The construction is functorial, since a chain map f : A→ B induces a natural
chain map f [n] : A[n]→ B[n] (defined tautologically). It is also clear by the
definition that ZiA[j] = Zi+jA, BiA[j] = Bi+jA and H iA[j] = H i+jA. The
functor [n] is an isomorphism, its inverse being the functor [−n].

Definition 3.10. Let A,B be chain complexes. Their tensor product A⊗B
is the chain complex defined by

(A⊗B)n =
⊕
i+j=n

Ai ⊗k Bj

whose differential is defined on homogeneous elements as

dA⊗B(x⊗ y) = dAx⊗ y + (−1)deg(x)x⊗ dBy.

The tensor product of complexes is associative: given three complexes
A,B and C, unwinding the definition gives

((A⊗B)⊗ C)n ∼=
⊕

i+j+k=n

Ai ⊗Bj ⊗ Ck ∼= (A⊗ (B ⊗ C))n

and, for homogeneous x ∈ Ai, y ∈ Bj, z ∈ C,

d(A⊗B)⊗C(x⊗ y ⊗ z) = dx⊗ y ⊗ z + (−1)ix⊗ dy ⊗ z + (−1)i+jx⊗ y ⊗ dz =

= dA⊗(B⊗C)(x⊗ y ⊗ z)

for homogeneous x, y and z. Similarly, we define

(f ⊗ g)(v ⊗ w) = (−1)pqf(v)⊗ g(v)
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when g is a degree p morphism and v has degree q.
Similarly, by defining (by abuse of notation) the complex k as the complex

having k in degree 0 and 0 elsewhere, it is immediate to verify that one can
take the just defined tensor product of chain complexes, k as the identity
object and endow C(k) with the structure of a monoidal category. Recall
that a chain complex A is said to be concentrated in degree 0 if Ai = 0 for
every i 6= 0, so k is a chain complex concentrated in degree 0.

C(k) has a way richer structure than just that of a monoidal category. An
important feature is that it is a closed monoidal category: since the functor
given by tensoring with an arbitrary object has a right adjoint, it is possible
to define an internal hom, an object of the category itself representing the
space of morphisms between two other objects. We will see how this will
turn C(k) into a category enriched over itself. Let’s see precisely what we
mean by this.

Definition 3.11. LetA,B be chain complexes. Their internal homHom(A,B)
is the chain complex defined by

Hom(A,B)n =
∏
i

Hom(Ai, Bn+i) = {f i : Ai → Bi+n}i∈Z

that is, elements of degree n are the morphisms of degree n between the
A and B seen as graded k-modules (without any compatibility condition
with the differential). The differential is defined on homogeneous elements
f ∈ Hom(A,B)n as

df = dBf − (−1)nfdA.

Remark. According to the definitions, the elements f ∈ Hom(A,B)0 the
maps respecting the grading, while those of Z0Hom(A,B) are the chain
maps. The elements of H0Hom(A,B) are the chain maps up to homotopy :
indeed, given two chain maps f, g ∈ Z0Hom(A,B), an homotopy between f
and g is precisely a morphism h ∈ Hom(A,B)−1 such that dh = f − g.

Proposition 3.12. There is an isomorphism

Hom(A[n], B) ∼= Hom(A,B)[−n].

Proof. Take any f ∈ Hom(A[n], B)m. Since A[n]i = An+i, f is represented
by a collection

f i : Ai+n → Bi+m.

To this we associate the morphism represented by (−1)nf i considered as
an element of Hom(A,B)m−n = Hom(A,B)[−n]m, that we denote f̃ . It is
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immediate to verify that this is an isomorphism of graded modules. Let’s
check the differentials;

dHom(A[n],B)f = dBf − (−1)mfdA[n] = dBf − (−1)mfdA

while

dHom(A,B)[−n]f̃ = (−1)n((−1)ndBf − (−1)m−nfdA) = dBf − (−1)mfdA.

In the same way, there is an isomorphism

Hom(A,B[n]) ∼= Hom(A,B)[n].

Remark. The internal Hom defines a functor

Hom(−,−) : C(k)op ×C(k)→ C(k),

the action on morphisms being the usual (pre)composition.

Proposition 3.13. For any complex B, The internal Hom functor X →
Hom(B,X) is a right adjoint to the tensor functor X → X⊗B. This means
that, for any A,C ∈ C(k), we have a natural isomorphism

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)).

In general, we say that a monoidal category is closed if the functor defined
by tensoring by a fixed object admits a right adjoint, and we will freely call
internal hom the right adjoint. According to this definition, the proposition
above states that C(k) is a closed monoidal category.

Proof. We actually prove a stronger result, that being the natural isomor-
phism (of chain complexes!)

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)).

The claim will then follow by considering the 0-cycles. This follows from
unwinding the definitions: as a k-module,

Hom(A⊗B,C)n =
∏
i

Hom((A⊗B)i, Ci+n) =
∏
i

Hom
(⊕

j

Aj ⊗Bi−j, Ci+n
) ∼=

∼=
∏
i,j

Hom(Aj ⊗Bi−j, Ci+n) ∼=
∏
i,j

Hom(Aj,Hom(Bi−j, Ci+n)) ∼=

∼=
∏
i

Hom(Aj,
∏
j

Hom(Bi−j, Ci+n)) ∼=

∼=
∏
i

Hom(Aj,
∏
l

Hom(Bl, C l+i+n)) ∼= Hom(A,Hom(B,C))n,
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where we have used the usual tensor-hom adjunction for k-modules, and in
the end shifted the index of the product. One also shows that the differentials
of these two complexes coincide: let’s take, as usual, homogeneous elements
f ∈ Hom(A⊗B,C)n, v ∈ Ai and w ∈ B. Then,

(dHom(A⊗B,C)f)(v ⊗ w) = dC(f(v ⊗ w))− (−1)nf(dA⊗Bv ⊗ w) =

=dC(f(v ⊗ w))− (−1)nf(dAv ⊗ w)− (−1)n+if(v ⊗ dBw).

On the other hand, let f ∈ Hom(A,Hom(B,C))n and v, w as above. Since
deg(f(v)) = n+ i, we have

(dHom(A,Hom(B,C))f)(v)(w) = (dHom(B,C))(f(v))(w)− (−1)nf(dAv)(w) =

= dC(f(v)(w))− (−1)n+if(v)(dBw)− (−1)nf(dAv)(w).

Recalling that the isomorphisms (of k-modules)

Hom(X ⊗ Y, Z) ∼= Hom(X,Hom(Y, Z))

is defined by sending f : X ⊗ Y → Z to the morphism

x→ [y → f(x⊗ y)],

it is clear that the two differentials coincide.

By Yoneda’s Lemma, the above proposition characterizes the tensor prod-
uct of complexes in term of internal homs, and vice versa.

The stronger result we proved is in fact completely general.

Proposition 3.14. Let K be a monoidal category. Suppose that for any
B ∈ K the functor

A→ A⊗B
admits a right adjoint, denoted as [B,−]. Then, for any three objects A,B,C ∈
K the adjunction isomorphism induces a natural isomorphism

[A⊗B,C] ∼= [A, [B,C]].

Proof. By definition of adjunction, we have for every X ∈ K isomorphisms

Hom(X, [A⊗B,C]) ∼= Hom(X ⊗ (A⊗B), C]) ∼= Hom((X ⊗ A)⊗B,C) ∼=
∼= Hom(X ⊗ A, [B,C]) ∼= Hom(X, [A, [B,C]]).

The claim then follows by Yoneda’s Lemma.

We have also proved that the category Gr(k) is monoidal closed, since
all the definitions and proofs keep working in that case (simply ignoring
everything that was said about the differentials).
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3.2 Dg-categories

Definition 3.15. A (k-linear) dg-category is a category A enriched over the
monoidal category C(k).

Explicitly, this means that a dg-category A is composed by:

• A class of objects Ob(A);

• For every objectsA,B ∈ Ob(A), a chain complex of k-modulesA(A,B);

• For each object A ∈ A, a morphism k → A(A,A). Recall that k is
considered as a chain complex concentrated in degree 0;

• A composition law A(B,C)⊗A(A,B)→ A(A,C) satisfying the obvi-
ous associativity and unit conditions. Notice that the composition is a
morphism in C(k), i.e. a chain map.

Similarly, a graded category is a category enriched over the category Gr(k) of
graded modules. A dg-category is also a graded category simply by forgetting
the extra structure given by the differential.

A dg (or graded) category is said to be small if the class Ob(A) forms a
set. We will call k the base ring of the category A.

We say that a morphism f ∈ A(A,B) is closed if df = 0. Denoting with
idA the image of 1 ∈ k in A(A,A), it immediately follows from the definitions
that idA is closed of degree 0, since k → A(A,A) is a chain map. Similarly,
taking g ∈ A(A,B)n and f ∈ A(B,C)m it follows from the fact that the
composition is a chain map (and thus respects the grading) and from the
definition of tensor product of complexes that f ◦ g ∈ A(A,C)n+m and that
the graded Leibniz rule holds:

d(f ◦ g) = df ◦ g + (−1)deg(f)f ◦ dg.

A full dg-subcategory B of a dg-category A is a dg-category formed by
a subclass of the objects of A, and with B(A,B) = A(A,B) for A,B ∈
Ob(B) ⊆ Ob(A). If f ∈ Z0A(X, Y ) is a closed degree 0 morphism, a nullho-
motopy of f is a morphism h ∈ A(X, Y )−1 such that dh = f .

Example 3.3. The category C(k) admits the structure of a dg-category,
with the internal homs taken as hom object. This amounts to saying that
we can define a composition map

Hom(B,C)⊗Hom(A,B)→ Hom(A,C)
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that is a chain map and that respects the conditions of definition 3.2: this is
given by the usual composition of morphisms.

We will denote with Cdg(k) the category C(k) seen as a dg-category.
Similarly, given a k-linear additive category A, we can define the category
Cdg(A) of complexes of objects of A, with internal hom defined as in the case
of k-modules.

Remark. The above example is manifestation of a general fact: any closed
monoidal category K admits an enrichment over itself. Denote as usual with
[X,−] the right adjoint to − ⊗ X. First of all observe that the adjunction
defines, for every objects X, Y ∈ K, a canonical morphism

[X, Y ]⊗X ev→ Y,

called evaluation morphism. To define the composition map, one ought to
find, for X, Y, Z ∈ K, a morphism

[Y, Z]⊗ [X, Y ]→ [X,Z]

which under the adjunction corresponds to a morphism

([Y, Z]⊗ [X, Y ])⊗X → Z.

This can be defined as a composition

([Y, Z]⊗ [X, Y ])⊗X a→ [Y, Z]⊗ ([X, Y ]⊗X)
1⊗ev→ [Y, Z]⊗ Y ev→ Z,

where the first map is the associator and the second and last are induced
by the evaluation morphisms. The reader interested in this approach can
consult [Kel82], section 1.6.

Example 3.4. A dg-category A with only one object X is identifiable the
dg-algebra A(A,A). Recall that a dg-algebra A is a chain complex with a
suitable multiplication operation A ⊗ A → A. Of course, the composition
A(A,A) ⊗ A(A,A) → A(A,A) induces the multiplication operation of the
algebra.

On the basis of this example, one can consider a dg-category as a “dg-
algebra with several objects”, following the example of [Mit72]. This point
of view is often very useful, since many constructions typical of dg-algebras
and their representations can be translated with little effort in the language
of dg-categories.

Example 3.5. If A is a dg-category, one can define the opposite dg-category
Aop with the same objects as A and hom-spaces Aop(A,B) = A(B,A) by
defining the composition of homogeneous elements f ∈ Aop(A,B)n and g ∈
Aop(B,C)n as g ◦Aop f = (−1)pqf ◦A g.
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Example 3.6. If A is any k-linear category, then we can consider A as a
dg-category A by setting A(X, Y )0 = A(X, Y ) and A(X, Y )n = 0 for n 6= 0.
In this case, we say that A is concentrated in degree 0. Similarly, is A is a
graded category we can consider it as a dg-category with zero differentials.

If A is a dg-category, one can define several related objects:

• The graded categories Z∗A and H∗A defined by having the same ob-
jects as A but as a hom-objects the graded modules Z∗A(A,B) and
H∗A(A,B). This is well defined: for any A,B,C ∈ A, it follows from
the graded Leibniz rule that for two homogeneous composable mor-
phisms f ∈ A(B,C)n, g ∈ A(A,B)m such that df = dg = 0, we have

d(fg) = df ◦ g + (−1)nf ◦ dg = 0

and, if moreover f = dϕ, g = dγ for some ϕ ∈ A(B,C)n−1 and γ ∈
A(A,B)m−1, then

f ◦ g = dϕ ◦ dγ = d(ϕ ◦ γ).

• The k-linear categories Z0A and H0A, again with the same objects
but this time with the k-modules Z0A(A,B) and H0A(A,B) as hom-
objects. Similarly, one can define the categoryA0 having as hom-spaces
the k-module A0(A,B).

Z0A is called the underlying category of A, and H0A its homotopy category.
Two objects are said to be isomorphic if the are isomorphic in Z0A, and
homotopy equivalent if they are isomorphic in H0A.

Remark. The notion of isomorphism is the correct one in the sense that if
two objects A and A′ are isomorphic, then there are natural isomorphisms

A(A,B) ∼= A(A′, B) (3.1)

and
A(B,A) ∼= A(B,A′) (3.2)

given by (pre)composition with the isomorphism. The graded Leibniz rule
guarantees that those are chain maps.

Example 3.7. In the case of the dg-category Cdg(k), we have already seen
(although using different words) in section 3.1.1 that Z0Cdg(k) = C(k) and
that H0Cdg(k) = K(k), the homotopy category of complexes of k-modules.

One has also the notion of a dg-functor.
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Definition 3.16. A dg-functor between dg-categories is a C(k)-functor.

That is, a dg functor F : A → B is composed of

• A map F : Ob(A)→ Ob(B);

• For every A,B ∈ A, a chain map A(A,B)→ B(FA,FB)

satisfying the same compositions and identity conditions of Definition 3.3;
one defines similarly graded functors between graded categories. As in the
case of an ordinary category, we will denote with F(f) ∈ B(FA,FB) the
image of f ∈ A(A,B). A dg-functor is said to be fully faithful if for every
A,B ∈ A the chain map

A(A,B)→ B(T A, T B)

is an isomorphism. A fully faithful dg-functor identifies A with a full dg-
subcategory of B.

Since
A(A,B)→ B(FA,FB)

is a chain map, a dg-functor F induces k-linear functors

Z0F : Z0A → Z0B

and
H0F : H0A → H0B

defined as F on the objects and acting on hom-spaces via the maps induced
by the chain maps A(A,B) → B(FA,FB); the graded Leibniz rule guar-
antees that this is well defined. A dg-functor F is said to be essentially
surjective if Z0F is essentially surjective. Compositions of dg-functors is
defined in the obvious way; similarly, given a dg-category A we have the
identity dg-functor idA : A → A. In the following, we will sometimes write
F for both H0F and Z0F , letting the meaning be clear from the context.

Definition 3.17. The category dgcatk is the category whose objects are
small dg-categories and whose morphisms are dg-functors.

dgcatk itself is not a dg-category in any natural sense; this is a clear
difference from the case of ordinary categories, and one of the main drawbacks
of the theory; however, it still possesses several interesting features. For one,
as we will now see, it is a 2-category; there exists a notion of transformation
between dg-functors.
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Definition 3.18. Let F ,G : A → B be dg-functors between two dg-categories.
The complex of graded natural transformations Natdg(F ,G) is the chain
complex having in degree n the module formed by the family of morphisms

ϕX ∈ B(FX,GX)n

satisfying a graded naturality condition: for any morphism f ∈ A(X, Y )m,
we require the diagram

F(X) G(X)

F(Y ) G(Y )

ϕX

F(f)

ϕY

G(f)

to be commutative up to the sign (−1)nm. The differential is defined component-
wise.

By definition, Natdg(F ,G) is a subcomplex of the product∏
X∈A

B(FX,GX)

and inherits from this its differential. In order for this definition to make
sense, we ought to prove that if a collection ϕX ∈ B(FX,GX)n satisfies the
naturality condition, then dϕX ∈ B(FX,GX)n+1 does as well. This condition
is the reason for the sign in the definition; indeed, let f ∈ A(X, Y )m. We
want to prove the identity

dϕY ◦ F(f) = (−1)(n+1)mG(f) ◦ dϕX .

applying the differential to the naturality condition for ϕ

ϕY ◦ F(f) = (−1)nmG(f) ◦ ϕX

we get, by the graded Leibniz rule and the fact that G respects the grading,
the identity

dϕY ◦F(f) + (−1)nϕY ◦ dF(f) = (−1)nmdG(f) ◦ϕX + (−1)nm+mG(f) ◦ dϕX ,

So the claim will follow by proving that

(−1)nϕY ◦ dF(f) = (−1)nmdG(f) ◦ ϕX .

But this follows immediately from the fact that F and G are chain maps
(so dF(f) = F(df) and dG(f) = G(df)) and from the naturality condition
applied to the degree n+ 1 morphism df .
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Definition 3.19. A dg-natural transformation between two dg functors F ,G
is an element of Z0Natdg(F ,G).

In this case, we can get rid of the tricky sign and just say that a dg-natural
transformation is a collection of closed degree 0 morphisms

ϕX ∈ Z0B(FX,GX)

such that for any for any f ∈ A(X, Y ) the diagram

F(X) G(X)

F(Y ) G(Y )

ϕX

F(f)

ϕY

G(f)

commutes.
The above constructions allow us, given two dg-categories A and B, to

define the dg-functor category Hom(A,B) as a dg-category, with the objects
being the dg-functors between A and B and, given two dg-functors F and G,
Hom(A,B)(F ,G) = Natdg(F ,G).

We say that two dg-functors F and G are isomorphic if they are isomor-
phic in Z0Hom(A,B). As in the case of ordinary categories, we have

Proposition 3.20. Let F : A → B be a dg-functor between dg-categories.
F is fully faithful and essentially surjective if and only if there exists a dg-
functor G : B → A such that FG ∼= idB and GF ∼= idA. G is called a quasi-
inverse to F , and is unique up to an isomorphism. A dg-functor admitting
a quasi-inverse is called an equivalence of dg-categories2. 2And not a

quasi-equivalence,
which is a term
that we will use
extensively later.

Proof. The proof goes exactly as in the case of the same claim in ordinary
category theory, relying crucially on the isomorphisms (3.1) and (3.2).

Remark. Beware that at this point we have used the notation Hom(X, Y )
to denote two different objects; if X and Y are chain complexes, it is the
internal hom of chain complexes; if X and Y are dg-categories, it represents
the dg-category of dg-functors between X and Y .

The existence of an internal hom might suggest that the category of
dgcatk might itself have the structure of a closed monoidal category, i.e.
it might possess a suitable notion of tensor product of dg-categories: this is
in fact the case.
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Definition 3.21. Let A and B be dg-categories. their tensor product A⊗B
is defined as the dg category having as objects the couples (A,B) with A ∈ A
and B ∈ B, with

A⊗ B((A,B), (A′, B′)) = A(A,A′)⊗ B(B,B′)

and composition defined on homogeneous elements f ∈ A(A′, A′′), f ′ ∈
A(A,A′), g ∈ B(B′, B′′) and g′ ∈ B(B,B′) as

(f ⊗ g) ◦ (f ′ ⊗ g′) = (−1)deg(f) deg(g)(f ◦ f ′)⊗ (g ◦ g′).

We do not give the proof of the following proposition, that is analogous
to the same claim for the cartesian product of ordinary categories.

Proposition 3.22. For any A,B, C ∈ dgcatk there is a natural isomorphism

Homdgcatk(A⊗ B, C) ∼= Homdgcatk(A,Hom(B, C)).

Corollary 3.23. In the same hypotheses as above there is an isomorphism
in dgcatk

Hom(A⊗ B, C) ∼= Hom(A,Hom(B, C)).

Proof. Follows immediately from proposition 3.14.

This is the first instance of the fact that dg-categories are in general better
behaved than triangulated categories (although their connection is maybe not
yet apparent to the reader). In the triangulated case, we have seen in Chapter
2 that there can be no triangulated structure on categories of functors, and
similarly there is no easy notion of tensor product of triangulated categories.
In the setting of dg-categories, both are fairly natural constructions. This is
a common phenomenon: triangulated categories work well enough when one
has to deal with a single category, but as soon as one wants to relate different
categories many constructions become much harder.

Remark. We could have defined dg-categories as categories enriched over
complexes of objects in an arbitrary k-linear abelian category, instead of k-
modules. It should be clear that no particular difference would arise in the
theory.

3.3 Dg-modules

We now wish to talk about representable functors, in order to get a dg version
of the Yoneda Lemma. However, since the hom-spaces of a dg-category have
values in the category Cdg(k)3, the objects that one ought to consider are 3Or equiva-

lently C(k), since
the objects are the
same.

(dg) functors from an arbitrary dg-category to Cdg(k).
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Lemma 3.24. Let A be a dg-category, and let A ∈ A. Then are defined two
dg-functors

A(A,−) : A → Cdg(k)

A(−, A) : Aop → Cdg(k)

Proof. We have to prove that what we defined is indeed a dg-functor: we
show the case of the functor A(A,−), the other is similar. The claim that
it is a dg-functor amounts to saying that, for any two objects X, Y ∈ A, the
map

A(X, Y )→ Hom(A(A,X),A(A, Y ))

f →
[
g → f ◦ g

]
is a chain map. It’s clear that the map respects the grading, since the com-
position of a degree n morphism and a degree m morphism is a degree n+m
morphism. It also commutes with the differential, since by definition of in-
ternal hom of two chain complexes we have, for homogeneous f ∈ A(X, Y )n,

d
[
g → f ◦ g

]
=
[
g → d(f ◦ g)− (−1)nf ◦ dg

]
=
[
g → df ◦ g

]
by the graded Leibniz rule. This proves that A(A,−) is a dg-functor.

Definition 3.25. Let A be a dg-category. A left dg A-module is a dg-functor

L : A → Cdg(k).

A right dg A-module is a dg-functor

R : Aop → Cdg(k).

Sometimes we might drop the prefix dg, and simply talk about right and
left A-modules. At a first glance, it might not be clear why these functors
should be called modules. However often it is useful to consider dg-modules
more as an actual module that as a functor; consider for example the case
where A is a dg-category with a single object X (and is then identified with
the dg-algebra A = A(X,X)). Then a left dgA-moduleM is a chain complex
M(X) together with a chain map

A(X,X)→ Hom(M(X),M(X));

by the tensor-hom adjunction this is the same thing as a chain map

A(X,X)⊗M(X)→M(X).

In this case, it should be clear how M can be considered as an object over
which A acts. After developing some theory we will see some further exam-
ples of this fact.
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Definition 3.26. Let A be a dg-category. The dg-category of right dg A-
modules is defined as the dg-functor category

Mod -A = Hom(A,Cdg(k)).

By, definition, a left dg A-module is an element ofMod -Aop. If nothing
is specified, by dg A-module we will mean right dg A-module (and so, by
dg Aop-module a left dg A-module). We will mainly deal with right dg-
modules; the reason will be clear once we will have discussed the dg-Yoneda
embedding.

Definition 3.27. We define the category C(A) = Z0Mod -A. Its objects
are dgA-modules, and its morphisms are dg-natural transformations between
them.

We say that two dg A-modules are isomorphic if they are isomorphic in
C(A).

Similarly, we define the category of graded A-modules Mod -Agr as the
category of graded functors from Aop seen a graded category to the category
of graded k-modules, whose morphisms are graded natural transformations of
degree 0. With this definition, the categoryMod -A0 is a full subcategory of
Mod -Agr, since a dg-functor is in particular a graded functor. Furthermore,
a dg-natural transformation F : Mod -A → Mod -B induces a morphism
Fgr : Mod -Agr →Mod -Bgr.
Remark. C(A) is a complete and cocomplete abelian category. Kernels, cok-
ernels and arbitrary (co)limits can be computed object-wise, so this follows
from the fact that C(k) is a complete and cocomplete abelian category. Simi-
larly,Mod -Agr is a complete and cocomplete abelian category; on the other
hand, the category Mod -A0 is not abelian, since for example the kernel of
a graded map of chain complexes is not always a subcomplex of the first
complex; this is the reason why we introduced the category Mod -Agr, as a
sort of abelian hull for Mod -A0.

If M is a dg A-module, we define the shifted module M [n] as the dg-A
module having M [n](X) = M(X)[n] for X ∈ A, and M [n](f) = M(f)[n] for
a morphism f . As in the case of complexes, we have a natural isomorphism

Natdg(M,N [1]) ∼= Natdg(M,N)[1]. (3.3)

Definition 3.28. LetA be a dg-category. Then by Lemma 3.24, to an object
A ∈ A we can associate the right dg A-module hA = A(−, A) and the left
dg A-module h̃A = A(A,−). We call a right dg A-module isomorphic to
one of the form hA for some A ∈ A representable, and a left dg A-module
isomorphic to one of the form h̃A corepresentable. A dg-module is said to be
free if it is isomorphic to an (arbitrary) sum of shifts of representables.
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We come to the main result of this section, one of the most useful basic
facts about dg-categories.

Theorem 3.29 (dg-Yoneda lemma). Let A be a dg-category, M a right dg
A-module and A ∈ A. Then there is a natural isomorphism of complexes

Natdg(hA,M) ∼= M(X)

ϕ → ϕA(idA).
(3.4)

If M is a left A-module, there is a natural isomorphism of complexes

Natdg(h̃A,M) ∼= M(A)

ϕ → ϕA(idA).
(3.5)

Proof. We prove the second case, the first being similar. The proof goes as
in the case of the ordinary Yoneda Lemma: we wish to construct an inverse
to the map

ϕ→ ϕA(idA).

Recalling that h̃A(A) = A(A,A), this means that for an arbitrary x ∈
M(X)n, we want to define a graded natural transformation of degree n

ηx : h̃A →M

such that ηxA(idA) = x. Suppose that such a transformation exists, and let
g ∈ h̃A(B)m = A(A,B)m. Then by graded naturality, the diagram

h̃A(A) M(A)

idA x

M(f)(x)

f ηxB(f)

h̃A(A) M(B)

ηxA

h̃A(f)

ηxB

M(f)

is commutative up to the sign (−1)nm. So the only possible definition of ηx

is

ηxB : h̃A(B)m →M(B)n+m

f → (−1)nmM(f)(x).
(3.6)
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At this point, there are several things to check:

1. That, for any given B ∈ A, ηxB is in fact a graded morphism of degree
n, i.e. that M(f)(x) ∈M(B)n+m for any f ∈ A(A,B)m;

2. That (3.6) defines a graded natural transformation of dg-functors;

3. That (3.6) is a two sided inverse to (3.5), i.e. that ηxA(idA) = x and
ηϕA(idA) = ϕ for an arbitrary graded natural transformation ϕ;

4. That (3.5) (which at this point will be proved to be bijective) respects
the grading and commutes with the differentials, and hence is an iso-
morphism of complexes.

1. This is immediate: sinceM is a dg-functor, M(f) is a graded map of degree
m (since f has degree m) and so, having x degree n, M(f)(x) ∈M(B)n+m.

2. In order to prove that ηx is a graded natural transformation of degree
n, we have to check for any B,C ∈ A and g ∈ A(B,C)i, the diagram

h̃A(B) M(B)

h̃A(C) M(C)

ηxB

ηxB

h̃A(g) M̃(g)

commutes up to the sign (−1)in. Writing the definitions and using the fact
that M is a dg-functor (so commutes with the compositions) gives

h̃A(B) M(B)

f (−1)nmM(f)(x)

(−1)nmM(g)M(f)(x)

g ◦ f (−1)nm+inM(g ◦ f)(x)

h̃A(C) M(C).

ηxB

ηxB

h̃A(g) M(g)
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This proves the claim.

3. The first claim is obvious. To prove that the second, we fix a graded
natural transformation ϕ ∈ Natdg(h̃A,M)n. By definition, for any B ∈ A
and f ∈ h̃A(B)n = A(A,B)n,

η
ϕA(idA)
B (f) = (−1)nmM(f)(ϕA(idA))

since ϕA(idA) has degree n. But since ϕ is a graded natural transformation
of degree n,

M(f)(ϕA(idA)) = (−1)nmϕB(f),

so η
ϕA(idA)
B (f) = ϕB(f).

4. That (3.5) respects the grading is obvious. The identity

(dϕA)(idA) = d(ϕA(idA))

follows from the graded Leibniz rule and the fact that idA has zero differential,
and concludes the proof.

Corollary 3.30. For any object A and every right A-module M , the mor-
phism

CA(hA[−n],M)→ ZnM(A)

ϕ→ ϕA(idA)
(3.7)

is an isomorphism of k-modules.

Proof.

CA(hA[−n],M) =Z0Natdg(hA[−n],M),∼= Z0Natdg(hA,M)[n] ∼=
∼=ZnNatdg(hA,M)[n] ∼= ZnM(A).

Note that idA is a closed element of degree n of the chain complex
hA[−n](A).

Corollary 3.31 (dg-Yoneda embedding). The dg-Yoneda embedding

hA : A →Mod -A
A→ hA

(3.8)

is a fully faithful dg-functor.
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Proof. We have already proved that hA is a dg-module. We need to prove
that (3.8) is a dg-functor, and that it is fully faithful. For the first part, we
use the fact that a morphism f ∈ A(A,B)n induces by composition a graded
natural transformation of degree n

hA → hB

g → f ◦ g,

so (3.8) is a dg-functor. Full faithfulness follows from the dg-Yoneda lemma:

Mod -A(hA, hB) = Natdg(hA, hB) ∼= hB(A) = A(A,B).

This should make it somewhat clear why right dg A-modules are more
common than left modules; A embeds as a full dg-subcategory of the dg-
category of right dg A-modules.

A possible interpretation of the dg-Yoneda lemma (but far from the only
one) is to consider it as a generalization of the usual isomorphism

Homk(k,M) ∼= M

for a k-module M ; in this spirit, we conclude the section with a corollary that
will be useful in the future, as well as hopefully give some further intuition
about why it is useful to consider a dg-module as an actual module. It is the
dg-categorical counterpart of the fact that any module receives a surjective
morphism from a free module.

Corollary 3.32. Let M be a right dg A-module. Then there exists a free
(recall Definition 3.28) dg A-module P and a dg-natural transformation P →
M such that for any n ∈ Z and for any A ∈ A, the induced map

ZnP (A)→ ZnM(A)

is surjective.

The idea of the proof is simple: the representable module hA, when ap-
plied to A itself, possesses a copy of the base ring in degree 0; by taking
several copies of hA and sending4 the copies of 1 to to the generators of 4This made

possible by the
dg-Yoneda Lemma.

Z0M(A) we can find a surjective morphism hA(A) → M(A). At this point
we can conclude by taking a sum over all the objects of A of the such formed
modules (and shifts thereof.)
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Proof. First, let x ∈ ZnM(A) for some A ∈ A. Then, by Corollary 3.30 we
can find a dg-natural transformation ηx : hA[−n]→M such that ηxA(idA) = x.
At this point, we find a collections of generators {xi}i∈I of ZnM(A) and define
the dg-natural transformation

ΛA,n :
⊕
I

hA[−n]→M

by applying ηxi to the i-th addendum. This, way, we get that

ΛA,n
A :

(⊕
I

hA[−n]
)
(A)→M(A)

is surjective on the n-cycles. At this point, it is enough to repeat the process
for all the objects of A and all n ∈ Z; the desired dg-natural transformation

Λ :
⊕
A∈A
n∈Z

⊕
I

hA[−n]→M

can be defined by applying ΛA,n to the addendum (of the first sum) indexed
by (A, n).

The reason why we were only able to achieve the surjectivity on the level
of the cycles is the fact that we only relied on the images of the identities,
that are themselves closed. To obtain the general surjectivity we will need
to consider objects slightly more complicated than free modules. This will
be done in section 3.5.1.

3.3.1 Tensor product of dg-modules

In this section, A and B are fixed small dg-categories. The goal of this section
is to define the notion of tensor product of two dg A-modules. This will allow
us, given a dg-functor A → B, to define his extension Mod -A →Mod -B.

Definition 3.33. Let A and B be dg-categories. An A-B-bimodule is an
Aop ⊗ B-module.

Concretely, if we have an A-B-bimodule X, for every A ∈ A and B ∈ B
we have a chain complex X(A,B) and a morphism of complexes

A(A′, A)⊗X(A,B)⊗ B(B,B′)→ X(A′, B′)

for all A′ ∈ A and B′ ∈ B.
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Remark. If X is an A-B-bimodule then, for any A ∈ A and B ∈ B, the
dg-functor X(A,−) is a right B-module and X(−, B) a left A-module.

Example 3.8. If A is a dg-category, then A(−,−) is an A-A bimodule.
Similarly, if F : A → B is a dg-functor, then

B(−,F(−))

is an A-B bimodule.

Definition 3.34. Let M ∈ Mod -A be a right dg A-module and N ∈
Mod -Aop a left dg A-module. Define the chain complex T as

T =
⊕
A∈A

M(A)⊗k N(A),

where we have denoted with ⊗k the tensor product of chain complexes of
k-modules. Let v ∈ M(B), f ∈ A(A,B) and w ∈ N(A) for some A,B ∈ A.
Define the subcomplex S ⊆ T generated by the elements

M(f)v ⊗ w − v ⊗N(f)w.

The tensor product M ⊗A N is defined as the chain complex T/S.

Another say of saying this is that the tensor product M ⊗A N is defined
as the quotient of the chain complex T by the relations

M(f)v ⊗ w = v ⊗N(f)w (3.9)

for f, v and w as in the definition.

Remark. The construction is functorial: a graded transformation ϕ ∈ Natdg(M,M ′)n

induces a graded map of degree n

ϕ⊗ idN : M ⊗N →M ′ ⊗N

defined as
ϕ⊗ idN(v ⊗ w) = (−1)nmϕA(v)⊗ w

for v ∈M(A)m, w ∈ N(A). The fact that ϕ is graded natural transformation
guarantees that this is well defined: for f ∈ A(A,A′)m, v ∈ M(A′)l and
w ∈ N(A),

ϕ⊗ idN(M(f)v ⊗ w) = (−1)n(l+m)(ϕA ◦M(f)v)⊗ w =

=(−1)nl(M(f) ◦ ϕAv)⊗ w = (−1)nlϕAv ⊗N(f)w = ϕ⊗ idN(v ⊗N(f)w).
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Example 3.9. If X is an A-B bimodule and M an A module, then M ⊗AX
is a B-module. Explicitly, it is the B-module assigning the complex
M ⊗A X(−, B) to the object B. The above remark implies that this defines
a dg- functor

Mod -A →Mod -B
M →M ⊗A X

(3.10)

We now want to prove that the functor given by tensoring by a bimodule
is the right adjoint to an appropriately defined hom functor.

Definition 3.35. Let X be an A-B bimodule and N be a right dg B-module.
The right dg A-module Hom(X,N) is defined as

A→ Natdg(X(A,−), N).

For any object A ∈ A. This defines a natural dg-functor

Mod -B →Mod -A
N → Hom(X,N).

Proposition 3.36. The functors −⊗A X and Hom(X,−) form an adjoint
pair at the level of the underlying categories. Explicitly, for any A-module
M and B-module N there exists a natural isomorphism

HomC(A)(M,Hom(X,N)) ∼= HomC(B)(M ⊗A X,N).

This proof is a long unwinding of the definitions, relying essentially on
the tensor-hom adjunction of chain complexes.

Proof. An element of HomC(A)(M,Hom(X,N)) is a dg-natural transforma-
tion between the two dg B-modules M and Hom(X,N). This means that it
is represented by a collection of chain maps

ϕA : M(A)→ Natdg(X(A,−), N)

satisfying the naturality condition

ϕA ◦M(f) ∼= Hom(X,N)(f) ◦ ϕA′ . (3.11)

Since Natdg(X(A,−), N) is a subcomplex of the product∏
B∈B

Hom(X(A,B), N(B))
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the chain map ϕA can be expressed as a collection of chain maps

ϕBA : M(A)→ Hom(X(A,B), N(B))

satisfying the graded naturality condition in the variable B

ϕB
′

A (x) ◦X(A, g) = (−1)nmN(g) ◦ ϕBA(x) (3.12)

for x ∈M(A)n and g ∈ B(B,B′)m. Now, by definition

(Hom(X,N)(f) ◦ ϕBA′)(v) = ϕBA′(v) ◦X(f,B)

for v ∈M(A′) and f ∈ A(A,A′), so condition (3.11) reads

ϕBA(M(f)y) = ϕBA′(y) ◦X(f,B). (3.13)

On the other hand, an element γ of HomC(B)(M ⊗A X,N) is a collection of
chain maps

γB : M ⊗A X(−, B)→ N(B)

satisfying the naturality condition in the variable B

γB′ ◦N(f) = γB ◦ idM ⊗X(−, f). (3.14)

In turn, since M ⊗A X(−, B) is a quotient of the chain complex⊕
A∈A

M(A)⊗k X(A,B).

every γB can be represented as a collection of chain maps

γAB : M(A)⊗k X(A,B)→ N(B)

vanishing on the quotienting subcomplex, so such that

γAB(M(f)v ⊗ w) = γA
′

B (v ⊗X(f,B)w) (3.15)

for f ∈ A(A,A′), v ∈ M(A′) and w ∈ X(A,B). We can rewrite condition
(3.14) as

N(g)⊗ γB′(x⊗ s) = (−1)nmγB(x⊗X(A, g)s) (3.16)

for x ∈ M(A)n, g ∈ B(B,B′)m and s ∈ X(A,B′). At this point, it only
remains to check that under the isomorphism

HomC(k)(M(A)⊗k X(A,B), N(B)) ∼= HomC(k)(M(A),Hom(X(A,B), N(B))

f → x→ [y → f(x⊗ y)]

the conditions imposed on γAB correspond to those on ϕBA. However, it is now
clear that the condition (3.13) is equivalent to (3.15) and condition (3.12) is
equivalent to (3.16).
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One could have defined the tensor product directly using the adjunction
of Proposition 3.36. Concretely, one would define the (easier to deal with)
functor Hom(X,−) and then prove abstractly that it admits a left adjoint.
Another possible (and maybe more abstractly sound than the one we gave)
approach is via Kan extensions and coends, see for example [Gen17] or [Dri04]
14.3.

Corollary 3.37. Let A ∈ A, M ∈Mod -A and N ∈Mod -Aop. Then there
are natural isomorphisms

hA ⊗A N ∼= M(A)

and
M ⊗A h̃A ∼= M(A).

Proof. We prove the first claim, the second being similar. Denote with K
the dg-category with one object X and K(X,X) = k, with k considered
as a chain complex concentrated in degree 0. Then a dg K-module is the
same thing as a chain complex, and a dg Aop-module can be seen as an A-K
bimodule. Since C(K) = C(k), Proposition 3.36 gives, for an arbitrary chain
complex C and considering N as an A-K bimodule, an isomorphism

HomC(K)(hA ⊗A N,C) ∼= HomC(A)(hA,Hom(N,C)).

By the dg-Yoneda lemma,

HomC(A)(hA,HomC(K)(N,C)) ∼= HomC(K)(N,C)(A) = Hom(N(A), C) =

= HomC(k)(N(A), C).

So
HomC(k)(hA ⊗A N,C) ∼= HomC(k)(N(A), C),

and the claim follows from Yoneda’s lemma.

Corollary 3.38. In the same hypotheses as Proposition 3.36,

Natdg(M,Hom(X,N)) ∼= Natdg(M ⊗A X,N).

Proof. This is analogous to Proposition 3.14.

Definition 3.39. Let F : A → B be a dg-functor. The restriction dg-functor
is defined as

ResF : Mod -B →Mod -A
N → N ◦ F
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The induction dg-functor is defined as

IndF : Mod -A →Mod -B
M →M ⊗A B(−,F(−))

The restriction and induction functors can be considered as generaliza-
tions of the classical restriction and induction functors in the case of a mor-
phism of rings. In analogy with this case some texts denote M⊗AB(−,F(−))
with M ⊗A B. As in the classical case, we have

Proposition 3.40. ResF and IndF form an adjoint pair between the under-
lying categories, with the restriction being the right adjoint and the induction
being the left adjoint.

Proof. This follows from Proposition 3.36 once we prove that

Hom(B(−,F(−))M) ∼= ResFM.

Indeed, recall that the dg A-module ResFM is defined by

A→M(FA)

For A ∈ A. On the other hand, the dg A-module Hom(B(−,F(−)),M) is
defined by

A→ Natdg(B(−,F(A)),M) ∼= M(FA)

by the dg-Yoneda lemma.

Another crucial property of IndF is that it acts as an extension of F :
when when restricted to A ⊆Mod -A, it coincides with F .

Proposition 3.41. Let F : A → B be a dg-functor. Then the diagram

A Mod -A

B Mod -B

F

hA

hB

IndF

commutes up to isomorphism in Mod -B..

Proof. For an arbitrary A ∈ A,

IndF hA = hA ⊗A B(−,F(−)) ∼= B(−,F(A)) = hF(A)

by Corollary 3.37.
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3.4 Triangulated properties

In this section, we will prove that the category of dg A-modules up to ho-
motopy is in a natural way a triangulated category. This, since any category
embeds in its category of modules, will allow us to define the notion of a
pretriangulated dg-category, a dg-category whose homotopy category is tri-
angulated. We will then see that an arbitrary triangulated category has a
canonical pretriangulated hull.

Definition 3.42. The homotopy category HA of dg A-modules is the k-
linear category

HA = H0Mod -A.

Two dg A-modules are said to be homotopy equivalent if they are iso-
morphic in HA.

Remark. By the dg-Yoneda Lemma, there is a natural isomorphism

HA(hA[−n],M) ∼= HnM(A),

so the dg-Yoneda embedding induces a fully faithful functor

H0hA : H0A → HA.

We call H0hA the derived Yoneda embedding. When there is no risk of
ambiguity, we will use simply hA to denote the derived Yoneda embedding.

The category HA is clearly preadditive, since its hom-spaces have a nat-
ural additive structure. The natural functor CA → HA preserves finite
coproducts: indeed,

HomHA(
⊕
i

Xi, Y ) = H0Natdg(
⊕
i

Xi, Y ) ∼= H0
∏
i

Natdg(Xi, Y ) ∼=

∼=
∏
i

H0Natdg(Xi, Y ) ∼=
∏
i

HomHA(Xi, Y )

so coproducts in CA are in particular coproducts in HA. Therefore, HA is
an additive category with small coproducts. The category HA looks very
similar to the homotopy category K(k) of chain complexes of k-modules.; in
fact, in the case A = K, they coincide5. For this reason, it makes sense to 5The choice of

notation is some-
what unfortunate,
but one should
not confuse the
dg-category K with
the homotopy cat-
egory of complexes
of k-modules K(k).

expect that, like K(k),HA admits a triangulated structure. There are several
ways to do this. One, taken originally in [Kel94], is to prove that C(A) is in a
natural way a Frobenius category, and then to show that HA identifies with
its stable category, and is hence triangulated. Another, conceptually not very
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different, is to repeat verbatim the proof that the homotopy category K(A)
of an abelian category A is triangulated and observe that the arguments
translate effortlessly in the case of the homotopy category of dg-modules.
Here we will sketch the second approach; details on the first can be found in
[Kel94].

In all this section, A will be a fixed dg-category.

Definition 3.43. Let f : M → N be a closed, degree 0 morphism between
dg A-modules.6 Its (strict) cone C(f) is the dg A-module defined in the 6That is, a mor-

phism in C(A).following way:

• For an object A ∈ A, set

C(f)(A) = C(fA) = M(A)[1]⊕N(A)

as a graded module, with the differential defined as

d(xn+1, yn) = (−dAxn+1, dN(A)y
n + fA(xn+1))

for xn+1 ∈ M(A)[1]n = M(A)n+1, yn ∈ N(A)n. It is immediate to
verify that d2 = 0.

• Given a morphism h ∈ A(B,A)i, we define the morphism

C(f)(h) : C(f)(A)→ C(f)(B)

as
C(f)(h)(xn+1, yn) = ((−1)iM(h)xn+1, N(h)yn)

for xn+1 ∈M(B)[1]n, yn ∈ N(B)n.

We verify that

C(f) : Aop(A,B)→ Hom(C(f)(A), C(f)(B))

is a chain map, so to check that C(f) is indeed a dg A-module: we have

C(f)(dh)(xn+1, yn) = ((−1)i+1M(dh)xn+1, N(dh)yn)

while

(dC(f)(h))(xn+1, yn) = dC(f)(B)(C(f)(h)(xn+1, yn))− (−1)iC(f)(h)d(xn+1, yn) =

=dC(f)(B)((−1)iM(h)xn+1, N(h)yn)− (−1)iC(f)(h)(−dxn+1, dyn + fA(xn+1)) =

=((−1)i+1d(M(h)xn+1), d(N(h)xn+1) + (−1)ifB(M(h)xn+1))+

− (−M(h)dxn+1, (−1)iN(h)dyn + (−1)iN(h)fA(xn+1))) =

=((−1)i+1M(dh)xn+1, N(dh)yn)
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by the naturality of f .
The inclusion map N(A) → C(f)(A) is a chain map and hence defines

a dg-natural transformation N → C(f), while the inclusion M(A)[1] →
C(f)(A) is only a graded map of degree 0 (it does not preserve the differen-
tial). On the other hand, the projection C(f)(A)→M(A)[1] is a chain map,
while the projection C(f)(A) → N(A) is not. So, if f : M → N is a closed
degree 0 morphism, we have an exact sequence in C(A)

0→ N → C(f)→M [1]→ 0 (3.17)

when the first arrow is the inclusion and the second the projection.

Remark. As in the case of complexes, the cone is a homotopical cokernel,
in the sense that the datum of a morphism from the cone of a morphism
f : M → N to a dg A-module L is the defines univocally a morphism g
from N to S, together with a nullhomotopy of gf . One of the fundamental
facts about triangulated categories is that homotopical cokernels are also
homotopical kernels (see Proposition 3.61, as well as axiom TR2). This
echoes the fact that, in general, triangulated categories arise when taking
homotopy categories of (appropriately defined) “stable” categories.

Remark. From now on, we will often make the abuse of notation of talking
about dg-modules as if they were actual chain complexes: for example, by
talking about an element x ∈ Mn if M is a dg A-module. Every time we
write this, it will be implied that we are actually talking about an element
xA ∈ M(A)n for an arbitrary A. This will not create problems since all
the constructions we will make will be natural in A, so the “object-less”
constructions we will make will give well defined dg-modules and dg-natural
transformations. Of course, this is not obvious a priori, so one should check
every time that a definition given talking the object-free language actually
translates into a meaningful construction in the many-objects setting, like
we just did for the cone of a dg-natural transformation.

Definition 3.44. A short exact sequence of dg A-modules

0→M
u→ N

v→ L→ 0

is said to be graded split (semi-split in [GM02]) if there exists an element
w ∈Mod -A(L,N)0 such that v ◦ w = idZ .

We are not requiring w to commute with the differential, but only to
respect the grading. This implies (by the usual splitting lemma in the abelian
categoryMod -Agr) that N admits a decomposition N ∼= M⊕L as a graded
module. The prototypical example of a graded split sequence is the sequence
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(3.17), where the middle objects is isomorphic to the sum of the other two as
a graded module, but not as a dg-module. In fact, up to homotopy (and up to
a rotation of the triangle) this example is completely general: any sequence
of the type is (3.17) is graded split (take as w the inclusion); we will see in
Lemma 3.46 that the converse is also true. We now get to the main theorem
of this section.

Theorem 3.45. HA admits the structure of a triangulated category, with
the translation given by the shift and the class of distinguished triangles being
given by the triangles isomorphic to those of the form

M
f→ N → C(f)→M [1].

for some closed degree 0 morphism f . Furthermore, the distinguished trian-
gles are precisely those isomorphic to graded split short exact sequences (see
Lemma 3.46).

The proof is very long, so we give the main steps and refer to [GM02,
p. IV.1.9] for the full details. Again, [GM02] deals with chain complexes
rather than with dg A-modules, but, as will be clear, the proof is natural
in the objects and translates verbatim to the dg-case, modulo the necessary
checks.

To begin with, recall that exactly as in the case of chain complexes, two
morphisms f, g in C(A) are identified in HA if and only if there exists a
graded natural transformation h of degree −1 such that d(h) = f − g.

Lemma 3.46. Any graded split exact sequence in HA

0→M
u→ N

v→ L→ 0

can be completed to a distinguished triangle (as in Theorem 1.9)

M → N → L→M [1].

Proof. Selecting a splitting, we can suppose N ∼= M⊕L as a graded module.
The differential of N is easy to identify; indeed, writing the generic degree 1
graded morphism as

dN(x, y) = (α(x) + β(y), γ(x) + δ(y))

and imposing for M → N and N → L to commute with the differentials, we
find

α(x) = dx, γ(x) = 0 and β(y) = dy
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so dN(x, y) = (dx − fy, dy) for some f ∈ Natdg(L,M)1. In this form, the
condition d2 = 0 is equivalent to requiring df = 0, so for f to be a dg-natural
transformation L→ X[1].

At this point, one proves that the triangle

M
u→ N

v→ L
f→M [1]

is distinguished by proving that it is isomorphic to the triangle

M
u→ N → C(u)→M [1];

with this goal, consider the diagram

M N L M [1]

M N N ⊕M [1] M [1]

u v f

id id id

u

g

with g(x, y) = (0, idL, f). One must then prove that the squares commute
modulo homotopy (in fact, the first and last square commute in C(A)) and
that g is a homotopy equivalence; this concludes the proof.

We can now approach the proof of theorem 1.9.

Proof of Theorem 1.9. We have already seen thatHA is an additive category,
so we have left to prove axioms TR1-TR4.

TR1

b) and c) are obvious from the definition. To prove a), one shows that the
diagram

M M 0 M [1]

M M C(idM) M [1]

commutes up to homotopy and that 0→ C(idM) is a homotopy equivalence.
This can be done by finding a graded natural transformation h : C(idM) →
C(idM) of degree −1, such that d(h) = idC(idM ). Since C(idM) = M [1]⊕M ,
by defining

h(xn+1, yn) = (yn, 0)

one can easily check that h is a graded natural transformation of degree −1,
and that d(h) = idC(idM ).
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TR2

We wish to prove that if

M
u→ N

v→ L→ wM [1]

is distinguished then

N
v→ L

w→M [1]
−u[1]→ N [1]

is as well. For this, it is enough to prove that, for any morphism u, denoting
with i and p the inclusion to and projection from its cone, the triangle

N
i→ C(u)

p→M [1]
−u[1]→ N [1]

is isomorphic to the (distinguished by definition) triangle

N
i→ C(u)→ C(i)→ N [1].

Then, it is enough to define a morphism θ : M [1] → C(i) such that the
diagram

N C(u) M [1] N [1]

N C(u) C(i) N [1]

p −u[1]i

i

θ (3.18)

is an isomorphism of triangles. Recalling that (as a graded A-module)

C(i) = N [1]⊕ C(u) = N [1]⊕M [1]⊕N,

we can define
θ(x) = (−u[1](x), x, 0).

At this point, one has to verify the following:

1. θ is a dg-natural transformation (that is, is a degree 0 natural trans-
formation that commutes with the differentials);

2. The diagram (3.18) commutes up to homotopy;

3. θ is a homotopy equivalence.

This proves axiom TR2.
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TR3

Again, we can prove this in the case where both distinguished triangles are
in the form M

u→ N → C(u) → M [1]. In this case, suppose that we have a
diagram

M N C(u) M [1]

M ′ N ′ C(u′) M ′[1]

u

u′

f g f [1]h

with the morphism h missing, commutative up to homotopy. This means that
there exists a morphism s ∈ Natdg(M,N ′)−1 such that ds = g ◦ u − u′ ◦ f .
Recalling that C(u) = N ⊕M [1] and C(u′) = N ′⊕M ′[1], we can now define
h : C(u)→ C(u′) as

h(x, y) = (f(x), g(y) + s(x)).

At this point, one verifies that h is natural, commutes with the differentials
and that makes the diagram above commute.

Important remark. The morphism h depends explicitly on the chosen homo-
topy s, which is in general not unique; this echoes the discussion in Chapter
2 about the non-functoriality of the cone in an abstract triangulated cate-
gory.

TR4

This is omitted: the interested reader can consult [GM02] for a proof of this
as an application of Lemma 3.46.

Recall now that in a triangulated category the (non-strict) cone of a
morphism x

u→ y is any object completing x
u→ y to a distinguished triangle

(as per TR1), and that any two cones are (non-canonically) isomorphic.

Lemma 3.47. Let T be a triangulated category and suppose that S ⊆ T is
a full subcategory. Suppose also that the following hold:

1. 0 ∈ S;

2. For every x ∈ S the translation x[1] is isomorphic to an object in S;

3. For every morphism x
u→ y between objects of S, the cone C(u) is

isomorphic to an object in S.
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Then S admits the structure of a triangulated category, with translation func-
tor induced from that of T (via condition 2) where the distinguished triangles
are those that are distinguished in T .

Note that, even though the object C(u) is only defined up to isomorphism,
the condition is still well-posed.

Proof. Axioms TR1-TR4 are trivially satisfied, since they only depend on
objects of which conditions 1-3 guarantee the existence. Then, since S has
a zero object and its hom-sets form an abelian group, it is also closed under
finite coproducts.

We have just proved that, although the homotopy category of dg A-
modules H0A is not necessarily triangulated, it always embeds in a triangu-
lated category. In particular, there exist notions of shifts of objects and cones
of morphisms; these objects, however, may not lie in A. For this reason, we
give the following key definition:

Definition 3.48. A dg-categoryA is said to be pretriangulated (resp. strongly
pretriangulated) if the following conditions are satisfied:

• 0 ∈ A;

• For every closed degree 0 morphism, its (strict) cone is isomorphic
(resp. homotopy equivalent) to an object of A;

• For every object A ∈ A its shift A[1] is isomorphic (resp. homotopy
equivalent) to an object of A.

Equivalently, A is pretriangulated (resp. strongly pretriangulated) if the
essential image of the derived Yoneda embedding H0hA (resp. the Yoneda
embedding hA) is a triangulated subcategory of HA.

A strongly pretriangulated dg-category is in particular triangulated. If A
is pretriangulated, we will freely talk about shifts and cones of objects.

Proposition 3.49. Let A be a pretriangulated dg-category. Then its homo-
topy category H0A admits a triangulated structure, with shift functor and
distinguished triangles induced by those of HA.

Proof. Follows immediately from Lemma 3.47 and from the definition of
pretriangulated dg-category.
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Remark. If A is a strongly pretriangulated dg-category (in fact, just if it
contains shifts), there is a natural isomorphism

A(A,B)i ∼= A(A[−i], B) ∼= A(A,B[i]).

If A is (not strongly) pretriangulated, there are isomorphisms

H iA(A,B) ∼= H0A(A[−i], B) ∼= H0A(A,B[i]).

Lemma 3.50. Let F be a dg-functor F : Mod -A → Mod -B. Then the
following claims hold:

1. F commutes with shifts: for every object M ∈ CA, there is an isomor-
phisms in C(B) F(M [1]) ∼= F(M)[1];

2. F sends graded split exact sequences to graded split exact sequences.

Proof. If M is a dg A-module, there exist two obvious closed morphisms

i : M →M [1]

of degree 1 and
j : M [1]→M

of degree −1 such that ij = idM [1] and ji = idM . The existence of these
morphisms completely characterizes M [1]: the fact that i and j are inverses
identifies M [1] with M as a graded module, and the fact that they are closed
characterizes the differential on M [1] as the same of M (up to a sign). Since
F is a dg-functor, F(i) and F(j) are still mutually inverse degree 1 and −1
closed morphisms, so they identify F(M [1]) and F(M)[1].

To prove the second claim, we use the fact that a graded split sequence is
a split exact sequence in the abelian categoryMod -Agr, and that an additive
functor between abelian categories preserves split exact sequences.

The above lemma has an immediate corollary:

Proposition 3.51. Let F : A → B a dg-functor between pretriangulated dg-
categories. Then

H0F : H0A → H0B

is an exact functor between triangulated categories.

Although this suffices most of the times, it is still useful to know that
dg-functors commute strictly (i.e. not up to homotopy) with cones.
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Proposition 3.52. Any dg-functor F : Mod -A →Mod -B preserves cones:
we have that

C(F(f)) ∼= F(C(f))

for any dg-natural transformation f : M → N .

Proof. This is [BLL04, Lemma 3.8]. Since

Fgr : Mod -Agr →Mod -Bgr

is an additive functor (in the sense that preserves the additive structure of the
hom-spaces) it also preserves biproducts ([Mac71, VIII.2]). So, as a graded
module,

F(C(f)) = F(N ⊕M [1]) ∼= F(N)⊕F(M [1]).

To prove that the differentials coincide, one considers the four natural mor-
phisms

M [1] C(f) N
p

j π

i

given by the inclusions and projections. We already know that dp = di = 0.
On the other hand,

dj = i ◦ f and dπ = −f ◦ p.

Since F preserves these relations and the differential on C(f) is completely
characterized by them (for how one would prove this, see the proof of Lemma
3.46), the claim follows.

Remark. The same reasoning shows the (apparently obvious) fact that if A is
any dg-category, the categoryMod -A is strongly pretriangulated: the cone
(inMod -A) of a closed degree 0 morphism is isomorphic to the cone of the
same morphism in Mod -Mod -A.

Corollary 3.53. If X is an A-B bimodule, then − ⊗A X and Hom(X,−)
induce an adjoint couple of exact functors between the triangulated categories
HA and HB.

Proof. − ⊗A X and Hom(X,−) are dg-functors between the dg-categories
Mod -A and Mod -B, so they induce functors between the homotopy cate-
gories. By Proposition 3.51 those are exact, and by Corollary 3.38 those are
adjoint (take the homology of both sides of the isomorphism).
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At this point, we would like to define the pretriangulated hull Apre-tr of a
dg-categoryA as the smallest pretriangulated subcategory of C(A) containing
A.

As it is, this definition is very intuitive but slightly problematic, since the
intersection of two pretriangulated subcategories (not closed under isomor-
phisms) might fail to be pretriangulated. An easy fix7 is to define explicitly 7but not the

only one; for ex-
ample we could
have only consid-
ered subcategories
closed under iso-
morphism, and
defined Apre-tr as
the intersection of
those, finding a
slightly bigger but
still dg-equivalent
category.

the objects of Apre-tr in the following way: to begin with, set A0 = A. Then,
define inductively the dg-category An+1 by adding to An all the shifts and
strict cones (as always, in C(A)) of objects and morphisms in An.

Definition 3.54. The pretriangulated hull Apre-tr of a dg-category A is de-
fined as the full subcategory of C(A)

Apre-tr =
⋃
n

An.

In the following, we will use the word cone to denote either the strict
cone of a morphism or its cone in the homotopy category. It is clear by the
definition that Apre-tr is a strongly pretriangulated dg-category. Similarly,
A is strongly pretriangulated if and only if A ↪→ Apre-tr is an equivalence,
and is pretriangulated if and only is H0A ↪→ H0Apre-tr is an equivalence of
categories. This definition of Apre-tr may seem unsatisfactory, since it is not a
priori obvious that there can not exist a “smaller” pretriangulated category
containing A, living outside of the category Mod -A. This is not the case;
Apre-tr can be shown to satisfy a universal property.

Proposition 3.55. Let B be a strongly pretriangulated dg-category and let
F : A → B be a dg-functor. Then, there exists dg-functor F : Apre-tr → B,
unique up to isomorphism, extending F , i.e. such that the following diagram
commutes.

A B

Apre-tr

F

F

Proof. The dg-functor F : A → B induces the induction dg-functor

IndF : Mod -A →Mod -B,

extending F . Denoting with B the essential image of the dg-Yoneda embed-
ding B → Mod -B, we prove by induction that IndF(An) ⊆ B. To begin
with, since on A0 = A the dg-functor IndF coincides with F (up to isomor-
phism), we have that IndF(A0) ⊆ B. The inductive step follows from Lemma
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3.52 and the fact that B is strongly pretriangulated; so IndF(Apre-tr) ⊆ B. At
this point, F is constructed by composing IndF (restricted to Apre-tr) with
a quasi-inverse to the inclusion B → B. The uniqueness comes again from
Lemma 3.52.

There exists a similar universal property where B is (not strongly) pre-
triangulated, but it requires some concepts that have not been introduced
yet.

3.4.1 Enhancements of triangulated categories

We can now introduce the main topic of this thesis. We have seen that to any
dg-category we can associate a canonical triangulated category; the following
definition is then then very natural.

Definition 3.56. Let T be a (k-linear) triangulated category. A dg-enhancement
of T is a couple (A, ε) where A is a pretriangulated dg-category and

ε : T ∼→ H0A

is an exact equivalence.

Often, we will refer to only A as the enhancement, the equivalence being
implicit. As it is, this notion is not very useful. To begin with, not all
triangulated categories admit an enhancement, but this will keep being true
even after we refine our notions. Secondly, and more importantly, even when
an enhancement exists there is no hope for it to be unique up to equivalence.
The reason for this is that it is possible (and common) for a dg-functor to
induce an isomorphism at the level of the homotopy category, but to fail
to be an equivalence. For this reason, the correct notion to consider is not
that of equivalence but of quasi-equivalence, which is roughly defined as a
dg-functor inducing an equivalence at the level of the homotopy category. In
order to make sense of matters of uniqueness, we have to study the homotopy
theory of dg-categories. This will be done in section 3.6.

Existence of an enhancement

As already said, not all triangulated categories admit dg-enhancements. The
prototypical example of a triangulated category without a dg-enhancement
is the stable homotopy category, i.e. the homotopy category of spectra.
This admits several equivalent definitions: we refer to [CS17, Example 3.5]
for a practical definition in our setting as well as a proof that it does not
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admit a dg-enhancement, and to [Lur17, Section 1.4.3] for a more modern
approach. The non-existence of a dg-enhancement in this case is not how-
ever particularly surprising: the stable homotopy category comes already
with an enhancement, either in the form of a stable model category in the
sense of [Hov07] or a stable ∞-category in the sense of [Lur17]; these are
fundamentally topological objects, without any obvious linear structure.

Definition 3.57. A triangulated category is said to be algebraic if it admits
a dg-enhancement.

Similarly, one says that a triangulated category is topological if it admits
an enhancement of the same type of the stable homotopy category. It can
be proved (see for example [Lur17, Section 1.3.1]) that all topological trian-
gulated categories are in particular algebraic, while we have seen that the
converse is not true. It should be noted that Muro, Strickland and Schwede
in [MSS07] have found examples of triangulated categories that are not topo-
logical, i.e. do not admit any type of enhancements. Those however appear
to be very pathological.8 8Not in the

sense that they are
particularly hard to
define, but that are
very far from the
platonic ideal of
what a triangulated
category “should”
look like.

Since this thesis focuses on dg-enhancements, we will naturally be mainly
interested in algebraic categories; we will see in the following that those
comprise virtually all the triangulated categories that could reasonably be
defined “algebraic”.

Example 3.10. The category K(A) is algebraic for any abelian category A;
a natural enhancement is given by the dg-category Cdg(A). Similarly, the
categories K+(A), K−(A) and Kb(A) are always algebraic. Moreover, any
triangulated subcategory of an algebraic category is clearly again algebraic.
We will also see in later sections that there exists a general procedure to
give enhancements to Verdier quotients of algebraic triangulated categories,
therefore any derived category is also algebraic.

Remark. Often, for example in geometric settings, it is useful to consider en-
hancements different to the canonical ones (see for example [LS16] or [CS17,
Section 1.2]). In those cases, it is important to know that those enhance-
ments are in some way equivalent; we will study similar questions in Chapter
4.

Recall that, given an additive category A, K(A) denotes the category of
complexes of objects of A up to homotopy, and that it is in a natural way a
triangulated category. We have the following characterization.

Proposition 3.58. Let T be a triangulated category. The following are
equivalent:
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1. T is algebraic;

2. There exists an additive category A and a fully faithful exact functor
T → K(A).

Proof. We refer to [CS17, Proposition 3.1] for the proof.

It is a very natural question to ask whether all triangulated categories
that are linear over a field are algebraic. All of those appearing “in nature”
do; however, examples of (very complicated) triangulated categories linear
over a field that do not have a dg-enhancement have been found by Rizzardo
and Van den Bergh in [RB20].

3.5 The derived category of a dg-category

In this section, we define and investigate the structure of the derived category
of a dg-category.

Definition 3.59. A dg-natural transformation ϕ : M → N between two
dg A-modules is called a quasi-isomorphism if for every object A ∈ A the
induced chain map

ϕA : M(A)→ N(A)

is a quasi-isomorphism.

Remark. As in the case of chain complexes, the isomorphisms in HA are in
particular quasi-isomorphisms.

Definition 3.60. A dg A-module M is said to be acyclic if for every A ∈ A,
M(A) is an acyclic complex.

Proposition 3.61. A dg-natural transformation ϕ : M → N is a quasi-
isomorphism if and only if its cone C(ϕ) is an acyclic dg-module.

Proof. The condition of being acyclic is a “object-wise” condition, so this
follows from the analogous result about chain complexes in an abelian cate-
gory.

We denote with Ac(A) the full subcategory of HA spanned by the acyclic
dg A-modules.

Remark. Ac(A) is a localizing subcategory of HA. To begin with, it is closed
under isomorphism, since an isomorphism in HA induces isomorphisms in
homology; it closed under taking cones by Proposition 3.61, since all mor-
phisms between acyclic modules are quasi-isomorphisms. Finally, it is closed
under coproducts, since taking homology commutes with coproducts.
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Definition 3.62. Let A be a dg-category. Its derived category D(A) is
defined as the Verdier quotient

D(A) = HA�Ac(A).

Equivalently, D(A) is defined the localization of HA with respect to quasi-
isomorphisms.

Remark. If A is small, the derived category D(A) is compactly generated by
the set {hA}A∈A. Indeed, let M be a dg A-module. The dg-modules hA are
compact by the Yoneda lemma. Suppose that

HomHA(hA,M [n]) = 0

for any A ∈ A and n ∈ Z. This, by the dg-Yoneda lemma, implies that

HnM(A) = 0

for any A ∈ A and n ∈ Z. This is equivalent to saying that M is acyclic,
therefore M is isomorphic to 0 in the derived category. We will also prove in
section 3.5.1 that it is possible to explicitly express any module up to quasi-
isomorphism as the cone of a morphism between free modules. Of course,
even if A is not small, the objects of the form hA are compact and generate
D(A).

Proposition 3.63. Let

0→M
f→ N

g→ L→ 0

be an exact sequence in CA. It can then be completed to an exact triangle

M
f→ N → L→ N [1]

in D(A).

Proof. We construct a quasi-isomorphism C(f)→ N . Consider the diagram

M N C(f)

M N L

f

f g

ϕ

Since C(f) = M [1]⊕N as a graded module, we define ϕ(xn+1, yn) = g(yn).
By the fact that gf = 0, ϕ commutes with the differentials. Since g is
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surjective, ϕ is surjective as well. Therefore we have an exact sequence in
CA

0→ Kerϕ→ C(f)
ϕ→ L→ 0;

To prove that ϕ is a quasi-isomorphism is then equivalent to showing that
Kerϕ is ayciclic. By definition of ϕ, we have that Kerϕ coincides with the
cone of the map

M
f→ Im f.

Since this is an isomorphism, Kerϕ is acyclic.

Remark. As in the case of D(A) for an abelian category A, if we have a
sequence of morphisms in C(A)

X0
i0→ X1

i1→ X1
i2→ X2 → · · ·

we can define the object hocolim−−−−−→i
Xi in D(A), and there is an isomorphism

in D(A)
hocolim−−−−−→

i

Xi
∼→ colim−−−→Xi.

Definition 3.64. A dg A-module P is said to be h-projective if

HomHA(P,N) = 0

for any acyclic dg A-module N .

We will denote with h-proj(A) the full subcategory of Mod -A spanned
by the h-projective modules. In the language of Chapter 1, the subcategory
h-proj(A) ⊆ HA coincides with the orthogonal subcategory ⊥Ac ⊆ HA.
Note that by Proposition 1.31, if P is h-projective the natural map

HomHA(P,M)→ HomD(A)(P,M)

is an isomorphism for any dg A-module M . At this point, we want to prove
the existence of h-projective resolutions for any dg A-module, i.e. for any dg
A-module M , a h-projective module P together with a quasi-isomorphism
P
∼→ M . Since the cone of a quasi-isomorphism is acyclic, we will then be

able to apply Proposition 1.32 to find a fully faithful functor

p : D(A)→ HA

that is a right adjoint to the quotientHA → D(A). To do this we will restrict
to a subclass of h-proj(A) that is particularly amenable to computations, the
semi-free dg A-modules.
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Definition 3.65. A dg A-module M is said to be semi-free if it admits a
filtration

0 = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆M

such that the following conditions are satisfied:

1. M =
⋃
i Fi = colim−−−→i

Fi;

2. The quotients Fi+1/Fi are free dg A-modules.

Remark. The filtration in the definition is indexed by an arbitrary ordinal,
not necessarily by the integers.

Lemma 3.66. Any exact sequence of the form

0→M
i→ N

p→ L→ 0

where L is a free dg A-module is graded split.

Proof. We find a splitting to p. We know that

L ∼=
⊕
i

hAi
[ni],

so
Natdg(L,N) ∼=

∏
i

Natdg(hAi
[ni], N) ∼=

∏
i

Natdg(hAi
,M)[ni],

and we can reduce to the case where L ∼= hA. Since p is surjective, we can
find an element x ∈ M(A)0 such that pA(x) = idA. Now the dg-Yoneda
lemma gives a graded natural transformation ϕ : hA → N of degree 0 such
that ϕA(idA) = x. Notice that, since x may not be closed, ϕ may fail to
preserve the differential. Another application of the dg-Yoneda lemma shows
that p ◦ ϕ = idhA , since pA ◦ ϕA(idA) = idA, so ϕ is a splitting of p.

The above result implies that is is always possible to suppose that the
inclusions Fi ↪→ Fi+1 in the definition of semi-free dg A-module admit a
splitting (that may not preserve the differential).

Lemma 3.67. Let M be a semi-free dg A-module. There is a graded split
short exact sequence in C(A)

0→
⊕
i

Fi
α→
⊕
i

Fi
π→M → 0 (3.19)

with Fi as in the definition of semi-free module.
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Proof. We have to define α and π; denote with ι the inclusion Fi ↪→ Fi+1.
For xi ∈ Fi, define

αi(xi) = xi − ι(xi) ∈ Fi ⊕ Fi+1,

and α as the sum of the αi; π is defined as the sum of the inclusions. It’s
clear that π ◦ α = 0; on the other hand, given a formal sum x =

∑
i xi with

xi ∈ Fi such that π(x) = 0, setting x−1 = 0 and defining

y =
∑
i

xi + ι(xi−1) + ι(xi−2) + . . .+ ι(x0)

we get x = α(y). In order to prove that the sequence is graded split we find
a left inverse to α. Denote with si : Fi → Fi−1 a splitting to the inclusion.
For a given xi ∈ Fi, define

βi(xi) =
∑
j≤i

sj ◦ sj+1 ◦ . . . ◦ si(xi)

and β as the sum of the βi. β is seen to be a left inverse to α, so the sequence
is graded split.

Proposition 3.68. A semi-free dg A-module is h-projective.

Proof. By the dg-Yoneda lemma, a free module is h-projective: indeed, for
any acyclic module N ,

HA(hA[n], N) ∼= H−n(N) = 0

for any object A. By the universal property of a coproduct, this implies that
free modules are h-projective. Now let M be semi-free, and let

0 = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆M

be a filtration as per Definition 3.65. By induction, each Fi is h-projective:
F0 is free and for every i the short exact sequence

0→ Fi → Fi+1 → Fi+1/Fi → 0

is graded split, so by Proposition 3.46 defines an exact triangle in HA. Then,
since HomHA(−, N) is cohomological, if Fi is h-projective then Fi+1 is as
well. Finally, the same reasoning of the inductive step applied to the triangle
induced by the sequence (3.19) gives that M is h-projective.
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Corollary 3.69. The derived Yoneda embedding induces, by composition
with the quotient HA → D(A), a fully faithful functor

H0A → D(A).

We will also call this functor the derived Yoneda embedding.

Proof. Since representable modules are h-projective, we have that

H0A(A,B)→ HA(hA, hB)→ D(A)(hA, hB)

is an isomorphism for all A,B ∈ A.

Lemma 3.70. Let F : A → B be a dg-functor. Then,

IndF SF(A) ⊆ SF(B).

Proof. We have already seen that IndF carries representable modules to rep-
resentable modules, and preserves shifts. Since IndF is a left adjoint, it
preserves coproducts and therefore preserves free modules. Then, let P be a
semi-free dg A-module and

0 = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ P

the relative filtration. We prove by induction that the filtration

0 = IndF(F−1) ⊆ IndF(F0) ⊆ IndF(F1) ⊆ · · · ⊆ IndF(P )

presents IndF(P ) as a semi-free dg A-module. By the discussion above,
IndF(F0) is free. By definition of semi-free, there is a short exact sequence
in CA

0→ Fi → Fi+1 → Fi+1/Fi → 0

that by Lemma 3.66 is graded split. Since any additive functor sends split
exact sequences to split exact sequence,

0→ IndF(Fi)→ IndF(Fi+1)→ IndF(Fi+1/Fi)→ 0

is split exact, so in particular exact. Since IndF(Fi+1/Fi) is free, the induction
step is proved.

Similarly, one easily proves that IndF sends h-projective modules to h-
projective modules.
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Remark. If f : M → N is a (closed, degree 0) morphism between semi-free
dg A-modules, then the cone C(f) is again semi-free. To see this, suppose
that M admits a filtration

F0 ⊆ F1 ⊆ · · · ⊆M

and N admits a filtration

E0 ⊆ E1 ⊆ · · · ⊆ N.

Then the filtration

E0 ⊆ E1 ⊆ · · · ⊆ N ⊆ N ⊕ E1[1] ⊆ · · · ⊆ N ⊕M [1] = C(f)

shows that C(f) is semi-free as well. Note that in this case it was important
for the filtration to be indexed by an arbitrary ordinal. More easily, the fact
that the cone of a morphism between h-projective modules is h-projective
follows immediately from the fact that the functor HomHA(−, N) is cohomo-
logical.

Remark. Reasoning as in the case of Mod -A, the above remark gives that
the dg-categories SF(A) and h-proj(A) are strongly pretriangulated.

3.5.1 Existence of semi-free resolutions

The goal of this section is to prove the following fact:

Proposition 3.71. Let M be a dg A-module. Then, there exists a quasi-
isomorphism P

η→ M , where P is a semi-free dg A-module. Furthermore, η
can be chosen to be surjective.

In particular, we have a well defined fully faithful right adjoint

p : D(A)→ HA

to the quotient HA → D(A), defined by choosing, once and for all, a semi-
free “resolution” for each element of D(A). Moreover, the composition

H0SF(A) ↪→ HA→ D(A)

is an exact equivalence. Therefore, SF(A) and, equivalently, h-proj(A) are
dg-enhancements of the triangulated category D(A).

For the proof, we begin with the promised generalization of Corollary
3.32.
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Lemma 3.72. Let M be a dg A-module. Then there exists a semi-free dg A-
module P and a dg-natural transformation P →M such than for any n ∈ Z
and for any A ∈ A, the induced maps

ZnP (A)→ ZnM(A)

and
P (A)n →M(A)n

are surjective.

Proof. Recalling the proof of Corollary 3.32, it is enough to find for every
A ∈ A and for every x ∈M(A) a semi-free dg A-module CA and a dg-natural
transformation η : CA → M such that x ∈ Im(ηA). Suppose for simplicity
that x ∈M(A)−1, as the general following from this by “shifting” the whole
argument. Define the dg A-module

CA = C(hA
id→ hA) = hA[1]⊕ hA,

with
d(αn+1, βn) = (−dαn+1, dβn + αn+1).

By the dg-Yoneda Lemma there are two degree 0 graded natural transforma-
tions

ϕ : hA[1]→M

such that ϕA(idA) = x and
ψ : hA →M

such that ψA(idA) = dx. Again by the dg-Yoneda Lemma, since dx is a closed
element, d(ψ) = 0 while d(ϕ) = ψ9. We define η : CA → M as the sum of ϕ 9This is a slight

abuse of notation,
but is makes sense
in light of the iso-
morphism (3.3)

and ψ. We know that η is a graded natural transformation of degree 0, but
it is not obvious that is commutes with the differentials. However,

ηd(αn+1, βn) =η(−dαn+1, dβn + αn+1) = −ϕ(dαn+1) + ψ(dβn) + ψ(αn+1) =

=dϕ(αn+1) + dψ(βn) = dη(αn+1, βn),

where we have crucially used the fact that

ϕ(dαn+1) = (dϕ)(αn+1)− d(ϕαn+1) = ψ(αn+1)− d(ϕαn+1).

That CA is semi-free follows from the filtration 0 ⊆ hA ⊆ CA. At this point,
one concludes by taking sums of shifts of modules of the form CA (to obtain
the surjectivity) and hA (to get the surjectivity on the cycles), as in the
proof of Corollary 3.32. The (two step) filtrations on each summand induce
a suitable two-step filtration on P , so P is itself semi-free.
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Lemma 3.73. Let M be a dg A-module. Then there exists an exact sequence
in C(A)

· · · → P−2 → P−1 → P0 →M → 0

such that P−i are semi-free dg A-modules and

· · · → ZnP−2(A)→ ZnP−1(A)→ ZnP0(A)→ ZnM(A)→ 0

is exact for every A ∈ A. These two conditions also imply that

· · · → HnP−2(A)→ HnP−1(A)→ HnP0(A)→ HnM(A)→ 0

is exact for every A ∈ A.

Proof. This is done in the same way in which one proves the existence of
projective resolutions in abelian categories with enough projectives; first,
Lemma 3.5.1 gives a surjection P0 →M that is also surjective when restricted
to the cycles. Denoting with M0 the kernel of the surjection, we have an exact
sequence in C(A)

0→M0 → P0 →M → 0

that is also exact when restricted to the cycles. Applying again Lemma 3.5.1
to M0 and denoting with M−1 the kernel of this surjection, we get another
exact sequence (also exact at the cycles)

0→M−1 → P−1 →M0 → 0.

This way, we can inductively find exact sequences

0→M−i → P−i →M−i+1 → 0

that are also exact at the cycles, and finally find the long exact sequence by
gluing those according to the diagram

0 0

M−1

· · · P−2 P−1 P0 M 0.

M−2 M0

0 0 0 0
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To prove that

· · · → HnP−2(A)→ HnP−1(A)→ HP
n (A)→ HnM(A)→ 0

is exact, we prove that the exactness of the sequences

0→M−i(A)n → P−i(A)n →M−i+1(A)n → 0

and
0→ ZnM−i(A)→ ZnP−i(A)→ ZnM−i+1 → 0

imply that

0→ HnM−i(A)→ HnP−i(A)→ HnM−i+1 → 0

is exact. In order to do this, recall that by definition of cycles and boundaries,
for any chain complex A and any n we have a short exact sequence

0→ ZnA→ An → Bn+1A→ 0;

assembling this and the two above into the diagram below

0 0 0

0 ZnM−i(A) ZnP−i(A) ZnM−i+1(A) 0

0 M−i(A)n P−i(A)n M−i+1(A)n 0

0 Bn+1M−i(A) Bn+1P−i(A) Bn+1M−i+1(A) 0

0 0 0

the snake lemma gives us that since the first two rows are exact, the third is
as well. Applying the same argument using now the short exact sequence

0→ BnA→ ZnA→ HnA→ 0

gives, again by the snake lemma, that

0→ HnM−i(A)→ HnP−i(A)→ HnM−i+1 → 0

is exact. So the short sequences that get glued into the long sequence are
also exact in homology, so the long sequence is as well.
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Before concluding the proof of Proposition 3.71, we give a construction.
Suppose we have a chain complex of objects in C(A), that is a sequence of
morphisms

· · ·P−1
dh→ P0

dh→ P1 → · · · (3.20)

such that d2h = 010. Denote with dv : Pi(A)n → Pi(A)n+1 the differential of 10The subscript
h in dh stands for
horizontal, for rea-
sons that will soon
be clear. Also, sev-
eral subscript have
and will be sup-
pressed for the sake
of reading clarity.

the complex Pi(A). We can define the total dg A-module TotP• this way:
given A ∈ A, define

Tot(P )(A)n =
⊕
i+j=n

Pi(A)j

as a graded module, with differential defined for x ∈ Pi(A)j as

dx = dhx+ (−1)idvx.

At this point, one proves that Tot(P•) is a dg A-module similarly to how we
proved that the cone a morphism is a dg A-module. Graphically, to visualize
Tot(P•) one considers the sequence (3.20) as a grid

· · · · · · · · · · · · · · ·

· · · P 1
−1 P 1

0 P 1
−1 · · ·

· · · P 0
−1 P 0

0 P 0
1 · · ·

· · · P−1−1 P−10 P−11 · · ·

· · · · · · · · · · · · · · ·

dh dhdhdh

dh dh dh dh

dh dh dh

dh dh dh dh

dh dh

dv

dv dv

dv

dvdvdv

dv

dv

dv dv dv

dh

dh dh

dv

dv

dv dv

dv

dv

dvdv

so that each Tot(P•)
n is defined as the direct sum of a diagonal, and the

differential sends an homogeneous object to the next diagonal by pushing
it both upwards and rightward (up to a sign which is necessary to get that
d2 = 0).

Remark. When dealing with complexes of this kind, we will keep denoting
with ZnPi, B

nPi and HnPi the cycles, boundaries and homologies of the i-th
module Pi (according to the vertical differentials).

Proof of Proposition 3.71. We construct P explicitly. Recall the exact se-
quence of Lemma 3.73

· · · → P−2 → P−1 → P0 →M → 0.
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Denote now with dh the maps P−i → P−i+1, with dv the differential of P−i
and consider the complex in C(A)

· · · dh→ P−2
dh→ P−1

dh→ P0 → 0.

Define P = TotP•. The map P0 → M induces a map P → M : write an
element x ∈ P n as a sum

x =
∑

xi

with xi ∈ P i+n
−i . Sending x to the image of x0 via the map P0 → M gives

a well-defined dg-natural transformation P → M . We will have finished if
we prove that P →M is a quasi-isomorphism and that P is semi-free. Let’s
begin with the first claim: we prove that H0P → H0M is an isomorphism11, 11Recall that by

this we mean that
H0P (A) → M(A)
is an isomorphism
for all A ∈ A. In
this type of proofs
this abuse of nota-
tion is particularly
harmless, since
the condition that
we want to prove
is “object-wise”
and there is no
hidden naturality
condition.

the case n 6= 0 being identical (but with slightly more confusing indices).
Just for the proof of this theorem, we will call dh (resp. dv or d)-cycles the
elements in the kernel of dh (resp. of dv or of d), and similarly for boundaries.
Let x ∈ P 0 be a d-cycle. As before, write x as a sum of homogeneous elements

x =
∑

xi

with xi ∈ P i
−i. We now want to show that we can change x by a d-boundary

in a way that the only non-zero element is the sum becomes x0 ∈ P 0
0 . Let n

be the largest integer such that xi 6= 0. Since dx = 0, we have that dv(xn) = 0
(since it would be the only component of dx in P n+1

−n ) and dh(xn) is, up to
a sign, equal to dv(xn−1) (since they are the only elements of dx in P n

−n+1).
This is exemplified graphically by the diagram

P n
−n dvx

xn dhx

P n
−n P n

−n+1 dvy

xn−1

P n−1
−n+1.

dv

dh

dv

The first condition tells us that xn represents a class in HnP−n, and the
second that the image of this class in HnP−n+1 via dh is zero, since it is sent

94



to a dv-boundary. Therefore, by exactness, xn is, up to a dv-boundary, equal
to the image via dh of a dv-cycle. This means that there exist y ∈ P n−1

−n and
z ∈ ZnP−n−1 such that

xn = dhz + dvy.

Since z is a dv-cycle, dz = dhz. Then, by changing x by dz, we get that
xn = dvy. Similarly, since dy coincides up to a sign and up to an element of
P−n+1
−n+1 with dvy, we can change again x by dy (possibly changed by a sign)

and find that xn = 0. By induction, we find that every d-cycle is, up to a
boundary, an element x0 ∈ P 0

0 .
That H0P → H0M is surjective follows directly from the fact that

Z0P0 → Z0M is surjective. Take now x ∈ H0P such that x maps to 0
in H0M . We have just proved that x admits a representative x0 ∈ P 0

0 . Since
x0 is a d-cycle, it is also a dv-cycle, so x0 ∈ Z0P0. At this point, since

H0P−1
dh→ H0P0 → H0M

is exact and x0 maps to 0 via the second map, x0 is, up to a dv-boundary,
equal to dhy for some y ∈ Z0P−1. Now, since for elements of P0 being dv-
boundaries is equivalent to being d-boundaries, x0 is, up to a d-boundary,
equal to dhy. However, since y is a dv-cycle, dvy = dy, so dvy is itself a
d-boundary and we are done.

We have only left to prove that P is semi-free. Recall that each P−i has
a two-step filtration 0 ⊆ Q−i ⊆ P−i. This induces a filtration of P

F0 = 0

F1 = P0

F2 = P0 ⊕Q0

F3 = P0 ⊕ P−1
F4 = P0 ⊕ P−1 ⊕Q−1
· · ·

than can be used to show that P is semi-free. Beware that the differential
on Fi is that induced by P , and not by the direct sum. This is unavoidable
since we want Fi to be a subcomplex of P .

3.5.2 h-injective resolutions

It is useful to know that there also exists a left adjoint to the quotient, given
by h-injective resolutions.
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Definition 3.74. A dg A-module I is said to be h-injective if

HomHA(N, I) = 0

for any acyclic dg A-module N .

The subcategory of h-injective modules is denotes with h-inj(A). By
definition, we have

h-inj(A) = Ac⊥ ⊆ HA.
As in the case of h-projective modules, we have

Theorem 3.75. Let M be a dg A-module. Then, there exists a quasi-
isomorphism M

∼→ I, where I is an h-injective dg A-module.

In particular, we have a well defined fully faithful left adjoint

i : D(A)→ HA

to the quotient HA → D(A), defined by choosing, once and for all, an
h-injective resolution for each element of D(A).

The proof of this fact is conceptually dual to that of Proposition 3.71,
but it is made slightly more difficult by the fact that representable and free
modules are always h-projective, but not always h-injective. Therefore one
has to define a different “building block” for the resolution, and then proceed
dually to Proposition 3.71. We omit the construction, referring to [Sta,
Section 22.21] for all the details.

3.5.3 Derived Hom and tensor

Recall that an A-B bimodule X induces an adjoint couple

−⊗A X : HA HB : Hom(X,−).

Those functors in general do not preserve quasi-isomorphisms, so do not de-
scend in the obvious way to functors at the level of the homotopy categories.
However, h-projective and h-injective resolution functors allow us to define
their “best approximation”, in the sense of derived functors. For simplicity
of notation, set F = −⊗A X and G = Hom(X,−). We can then define the
derived functors

LF : D(A) D(B) : RG

by defining LF as the composition

D(A)
p→ HA F→ HB → D(B)
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and RG as the composition

D(B)
i→ HA G→ HA→ D(A),

where in both cases the last arrow is the quotient functor.

Proposition 3.76. The functors

LF : D(A) D(B) : RG

form an adjoint pair.

Proof. Fix M ∈ D(A), N ∈ D(B). Then,

HomD(B)(LF M,N) = HomD(B)(F pM,N) ∼= HomHB(F pM, iN) ∼=
∼= HomHA(pM,G iN) ∼= HomD(A)(M,G iN) = HomD(A)(M,RGN).

In the following, we will sometimes denote the functor LF as

−⊗L X : D(A)→ D(B).

If F : A → B is a dg-functor, by setting F = IndF and G = ResF we get
an adjunction of exact functors

LF : D(A) D(B) : RG.

3.6 The homotopy theory of dg-categories

Definition 3.77. A dg-functor F : A → B between dg-categories is said to
be a quasi-equivalence if the following two conditions are verified:

• For every A ∈ A and B ∈ B, the induced chain map

A(A,B)→ B(FA,FB)

is a quasi-isomorphism.

• The induced functor
H0F : H0A → H0B

is an equivalence of categories.
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A dg-functor satisfying only the first condition is said to be quasi-fully faith-
ful.

The second condition “almost” implies the first one, since it implies that

H0A(A,B)→ H0B(FA,FB)

is an isomorphism. In order to deduce from this that

HnA(A,B)→ HnB(FA,FB)

is an isomorphism for an arbitrary n it is enough to suppose that either A
or B admit shifts: in that case, just apply the isomorphism to A′ = A[−n]
or B′ = B[n].

A dg-functor F : A → B between dg-categories induces a dg-functor
F : Apre-tr → Bpre-tr. To see this, compose F with the inclusion B ↪→ Bpre-tr
and the apply the universal property of the pretriangulated hull.

Proposition 3.78. If F : A → B is a quasi-equivalence, then

F : Apre-tr → Bpre-tr

is a quasi-equivalence.

Proof. This is conceptually analogous to Lemma 1.19. Fix B ∈ A and con-
sider the full subcategory C ⊆ Apre-tr of all objects A such that

Apre-tr(A,B)→ Bpre-tr(FA,FB)

is a quasi-isomorphism. It is clear that A ⊆ C. We prove that C is strongly
pretriangulated, which will imply that C = Apre-tr. First the shifts: for
A ∈ C, we have

Apre-tr(A[1], B) ∼= Apre-tr(A,B)[−1]
∼→ Bpre-tr(FA,FB)[−1] ∼=

∼= Bpre-tr(FA[1],FB),

where the third arrow is a quasi-isomorphism; so A[1] ∈ C. To prove that
C is closed under taking cones, let A,A′ ∈ C and f ∈ HomCA(A,A′) be two
arbitrary objects and a (closed, degree 0) morphism between them. We then
have a distinguished triangle in H0Apre-tr

A→ A′ → C(f)→ A[1]

which, writing Hom(−,−) for HomH0Apre-tr(−,−), induces an exact sequence
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Hom(A′[1], B) Hom(A[1], B) Hom(C(f), B) Hom(A′, B) Hom(A,B)

This, together with the five-lemma, implies that

H0Apre-tr(C(f), B)→ H0Bpre-tr(FC(f),FB)

is an isomorphism. In order to deduce from this that that

HnApre-tr(C(f), B) ∼= HnBpre-tr(FC(f),FB)

for any n, we use that C is stable under shifts, so

HnApre-tr(C(f), B) ∼= H0Apre-tr(C(f)[n], B) ∼= H0Apre-tr(C(f [n]), B)
∼→

∼→ H0Bpre-tr(FC(f)[n],FB) ∼= HnBpre-tr(FC(f),FB).

So we have proved that for any A ∈ Apre-tr and B ∈ A,

Apre-tr(A,B)→ Bpre-tr(FA,FB)

is a quasi-isomorphism. To prove that this is valid for any B ∈ Bpre-tr, just
fix any A ∈ Apre-tr and repeat the argument above considering the full sub-
category of Bpre-tr of all elements for which Apre-tr(A,B)→ Bpre-tr(FA,FB)
is a quasi-isomorphism: we have just proved that this contains A, and as
above we prove that it is closed under shifts and cones; this proves that F
is quasi-fully faithful. Finally, to prove that H0F is essentially surjective
we use that its essential image is a strictly (i.e. closed under isomorphism)
full subcategory of H0Bpre-tr that contains all the objects of B and is closed
under shifts and cones, so it has to coincide with all of H0Bpre-tr.

From this proposition follows that a dg-functor F : A → B is a quasi-
equivalence if and only if H0F : H0Apre-tr → H0Bpre-tr is an equivalence of
categories. Similarly, recalling Lemma 3.70, we have

Proposition 3.79. If F : A → B is a quasi equivalence, then

IndF : SF(A)→ SF(B)

is a quasi-equivalence.

Proof. SF(A) and is pretriangulated, so it is sufficient to prove that the
induced functor

H0 IndF : D(A)→ D(B)
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is an equivalence. Full faithfulness follows directly from Lemma 1.19: we
know that IndF carries representableA-modules to representables B-modules,
and since F is a quasi-equivalence H0 IndF is fully faithful when restricted to
the representable. We also know that those are compact generators for D(A).
Finally, one proves that H0 IndF is essentially surjective by using the fact the
its essential image contains B, and is closed under shifts, cones, coproducts
and homotopy equivalences: since by Lemma 3.67 every module in SF(B)
can be represented as the cone of a morphism between free B-modules, this
concludes the argument.

Remark. In a similar way, one proves that if F : A → B is a quasi-equivalence,
so is the induced dg-functor

IndF : h-proj(A)→ h-proj(B).

Remark. We have just proved that, if F : A → B is a quasi-equivalence, then
it induces an exact equivalence

D(A) ∼= H0SF(A)
IndF→ H0SF(B) ∼= D(B).

Since IndF is adjoint to ResF , this implies that the functor

D(B)→ D(A)

induced by composition with F is an equivalence.

We now get to a fundamental definition.

Definition 3.80. The category Hqe is defined as the localization of dgcatk
at the quasi-equivalences.

Remark. Since the quasi-equivalences in particular induce equivalences at the
level of the homotopy categories, a morphism Q : A → B in Hqe induces an
exact functor H0Q : H0A → H0B, that is well defined up to equivalence;
furthermore, if A and B are pretriangulated, H0Q is exact. To be more pre-
cise, denoting with catk the category of small k-linear categories, the functor
H0 : dgcatk → catk sends quasi-equivalences to equivalence of categories,
so descends to a functor from Hqe to catk[W−1], where W is the class of
(k-linear) equivalences. Fortunately, one can prove that this localization is
easy to describe as an homotopy category: it has the same objects as catk,
and as morphisms isomorphism classes of k-linear functors. This will allow
us to sweep this step under the rug, treating morphisms in catk[W−1] as
genuine functors. Note that this description of the localization is in general
not possible in dgcatk, since (for example) not all quasi-equivalences admit
a quasi-inverse.
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In the following we will see that Hqe is the correct category in which
to discuss the uniqueness of enhancements of triangulated categories. The
reasons are both conceptual - a quasi-equivalence between pretriangulated
dg-categories is just a dg-functor inducing an isomorphism at the level of
the homotopy category - and practical, since one can actually get some very
strong uniqueness results in Hqe.

The structure of Hqe is very complex, and describing it in detail is out-
side of the scope of this thesis; however, it is still worth it to give some
foundational results, that explain how the hom-spaces of Hqe are formed.
A recollection of these results can be found in section 4 of [Kel06]. More
detailed discussion are in [Toë07], [Tab05] and [Bel13]. We begin with a sim-
plified form of a Theorem of Tabuada ([Tab05], or appendix B in [Bel13] for
an english version).

Theorem 3.81. dgcatk admits the structure of a model category where the
weak equivalences are the quasi-equivalences, in which all dg-categories are
fibrant objects.

As a consequence of this theorem, the category Hqe has small hom-sets,
and every morphism in Hqe can be represented as a roof of dg-functors

A ∼← Acof → B,

where A ∼← Acof is a cofibrant replacement for A.
We have already seen that the category dgcatk is a monoidal category,

possessing a well behaved tensor product: it makes sense to ask whether this
structure descends to the localized category Hqe, defining a derived tensor
product of dg-categories ⊗L. The naive approach does not work, since the
functor A ⊗ − : dgcatk → dgcatk does not preserve quasi-equivalences, so
does not descend to a functor Hqe→ Hqe: however, as is often the case, if
A is cofibrant (in the sense of the model structure of Theorem 3.81) then the
functor A⊗− does preserve quasi-equivalences; this allows us to define the
derived tensor product A⊗LB as Acof ⊗B where Acof is a cofibrant replace-
ment for A, giving a well defined functor Hqe×Hqe→ Hqe. In general it
is not necessary to consider cofibrant replacements, but it is sufficient to take
h-flat (or k-flat in some texts) replacements (a dg-category A is h-flat if for
all A,B ∈ A the functor A(X, Y )⊗− preserves quasi-isomorphisms); this is
easier since, for example, if k is a field all dg-categories are h-flat. Note that
all cofibrant dg-categories are in particular h-flat.

Remark. It should be noted that, although every dg-category admits a cofi-
brant resolution, “most” dg-categories are not cofibrant, and cofibrant res-
olutions are not easy to compute in practice. On the other hand, h-flat
categories are easier to come by, as already seen in the case of a field.
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Remark. It follows from Theorem 3.81 that a morphism Q : A → B in Hqe
between pretriangulated dg-categories is an isomorphism in Hqe if and only
if the induced functor H0Q : H0A → H0B is an equivalence of triangulated
categories.

There is a more natural way to understand morphisms in Hqe. Sup-
pose that A is h-flat, otherwise replace A with a quasi-equivalent h-flat dg-
category. Denote with B the essential image of the derived Yoneda embedding
H0B → D(B); that is, the full subcategory ofHB (or of D(B), or ofMod -B)
spanned by all objects quasi-isomorphic to representable B-modules. Con-
sider now a dg A-B bimodule X; it induces (in fact, is the same thing as) a
dg-functor

A →Mod -B;

Definition 3.82. An A-B bimodule X is called right quasi-representable if
the image of the induced functor

A →Mod -B;

is is contained in B, i.e. if X(A,−) ∈ B for all A ∈ A. Equivalently, X is
right quasi-representable if

−⊗L X : D(A)→ D(B)

carries representable A-modules to objects isomorphic in D(B) to repre-
sentable B-modules.

We denote with rep(A,B) the full the subcategory of D(Aop⊗B) formed
by all right quasi-representable bimodules, and with repdg(A,B) the subcate-
gory ofMod -Aop⊗B formed by h-projective quasi-representable dg-modules,
i.e. a canonical dg-enhancement of rep(A,B).

Remark. There are several different but equivalent definitions of rep(A,B)
in the literature. For example, in [CS15] a right quasi-representable A-B
bimodule is by definition h-projective: this is always possible, since the no-
tion of being quasi-representable is invariant under quasi-isomorphism. The
advantage of this approach comes from the fact that if X is h-projective,
one can prove that the condition for X(A,−) to be quasi-isomorphic to a
representable module is equivalent to that of being homotopically equivalent
to a representable module. As a consequence, the image of the morphism
A →Mod -B is contained in the essential image of the derived Yoneda em-
bedding H0B → HB, that we will denote B̂. The advantage of this approach
is that B ↪→ B̂ is always a quasi equivalence, so X induces a morphism in
Hqe given by the roof A → B̂ ∼←↩ B. We will see in a few moments that all
morphisms in Hqe in fact arise in this way.
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The following theorem is originally due to Toën, as a corollary of a more
general result regarding the simplicial localization of dgcatk (see [Toë07]).
A more elementary proof has been given by Canonaco and Stellari in [CS15].
We keep supposing A to be h-flat.

Theorem 3.83. The set of morphisms in Hqe between two dg-categories A
and B is in natural bijection with the isomorphism classes in rep(A,B).

Idea of the bijection. We have already seen in the remark above that a right
quasi-representable h-projective A-B bimodule defines a morphism in Hqe
from A to B. Vice versa, suppose we have a morphism f ∈ HomHqe(A,B);

write f as a composition A I← A′ g→ B, that we can consider a formal
composition g ◦ I−1, where I is a quasi-equivalence and g is a dg-functor.
Since g is a dg-functor C → B, we can compose it with the dg-Yoneda
embedding to find a (right quasi-representable) A′-B-bimodule G. Similarly,
we can find a right quasi-representable A′-A-bimodule J associated to I.
Now one has to use the fact that I is a quasi-equivalence to find an “inverse”
J−1 to J ; once this is done, we will find the bimodule F corresponding to f
by setting F = J−1 ⊗B G. In order to find J−1, one first proves that since I
is a quasi-equivalence it induces a bijection

rep(A,A′)→ rep(A,A);

finally, J−1 can be defined as the preimage via this bijection of the “diagonal”
A-A bimodule A(−,−). For more details on this approach, the reader can
consult [CS15, Proposition 3.12].

From now on, we will call morphisms in Hqe quasi-functors.

Remark. Some authors call quasi-functors the bimodules in rep(A,B); ac-
cording to the convention that we will follow, a quasi-functor is an isomor-
phism class of bimodules.

One should now ask whether the monoidal category (Hqe,⊗L) is closed
, possessing an internal hom. The internal hom of dgcatk does not work
in this case: the dg-functor Hom(A,−) does not preserve quasi-equivalences
even when A is cofibrant. The correct solution applies the constructions
made in the above paragraph: the following theorem is also from [Toë07],
with a more elementary proof present in [CS15].

Theorem 3.84. The monoidal category (Hqe,⊗L) admits an internal hom
given by the dg category

RHom(A,B) = repdg(Acof ,B)
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where Acof is a cofibrant (or more in general h-flat) replacement for A. That
is, there is a natural bijection

HomHqe(A⊗L B, C) ∼= HomHqe(A,RHom(B, C))

for A,B, C ∈ Hqe.

3.7 Drinfeld’s dg-quotient

Recall that, given a triangulated subcategory S ⊆ T of a triangulated cate-

gory, the Verdier quotient T�S was characterized by the fact that any functor

T → T ′ annihilating S would factor through T�S. A similar construction
exists for dg-categories, called the Drinfeld dg-quotient.

Definition 3.85. An object A in a dg-category A is said to be contractible
if the identity idA ∈ A(A,A)0 admits a nullhomotopy (i.e. is a boundary).

Remark. if A is pretriangulated (in fact, it is enough for it to contain a zero
object in its homotopy category) being contractible is equivalent to being
isomorphic to 0 in H0A.

Let now A be a dg-category, and B ⊆ A a full dg-subcategory. We say
that a quasi-functor F : A → C annihilates B if H0F : H0A → H0C sends all
the objects of B to contractible objects. Note that this definition does not
depend on the chosen representative of H0F .

Definition 3.86. The Drinfeld quotient A�B is a dg-category A�B equipped

with a quasi-functorQ : A → A�B satisfying the following universal property:

any morphism A F→ B in Hqe annihilating B factors uniquely through Q, as
shown in the diagram

A C

A�B.

F

Q

It follows from the definition that the Drinfeld quotient, if exists, is unique
up to a unique isomorphism in Hqe. The uniqueness of the Drinfeld quo-
tient can actually be stated in a much more precise way; this has been done
both in the original paper [Dri04], and in more detail in [Tab10]; in par-
ticular, the factorization can be seen both at the level of rep(A, C) and at
that of the dg-enhancement repdg(A, C). We will not need those more precise
characterizations so we omit them, referring the interested reader to [Tab10].
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Theorem 3.87 ([Dri04]). Let A be a small dg-category, and B ⊆ A a full

dg-subcategory. Then the Drinfeld quotient A�B exists, and

H0Q : H0A → H0
(
A�B

)
is essentially surjective. Furtermore if A is h-flat (so for example is k is a
field), Q can be taken to be a dg-functor (i.e. a zig-zag of length one).

The construction is as follows: first take a h-flat resolution of A, Ã ∼→
A. Then consider the subcategory B̃ ⊆ Ã corresponding to B under the
resolution, and for every object B ∈ B̃, add to Ã a contracting homotopy, i.e.
a morphism hB of degree−1 such that d(hB) = idB: the dg-category obtained

in this way is the quotient A�B, and the morphism Q is the composition of

the inverse (in Hqe) of the resolution with the natural dg-functor Ã → A�B,
that is the identity on the objects. Of course, if A is already h-flat one takes
Q to be the natural dg-functor, without taking the resolution.

Remark. There is another, completely analogous way to describe A�B in
terms of the model structure on dgcatk; this was done in [Tab10]. Denote
with S the dg-category with two objects, called 1 and 2, and with hom-spaces

S(1, 1) = k, S(2, 2) = k, S(1, 2) = k and S(2, 1) = 0,

where k is considered as a chain complex concentrated in degree 0, and com-
position is given by multiplication. This is the dg-equivalent of the walking
arrow category, in the sense that a dg-functor S → A is just the specification
of a closed, degree 0 morphism in A. Now let D be the dg-category with two
objects, again denoted 1 and 2,

D(1, 1) = k, D(2, 2) = k, S(2, 1) = 0

and D(1, 2) equal to the complex

· · · → 0→ k
id→ k → 0→ · · · (3.21)

where k is located in degree −1 and 0; composition is again induced by
multiplication. In this case, a dg-functor D → A is the datum of a closed
degree 0 morphism f together with a nullhomotopy of f . There is a natural
dg-functor S → D corresponding to the inclusion of k in the degree 0 of
(3.21). Suppose now A to be cofibrant (otherwise take a resolution) and
let B ⊆ A be a full dg-subcategory. Recall that, since dgcatk admits the
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structure of a model category, in particular it admits all limits and colimits.

Define now A�B via the following pushout diagram in dgcatk∐
x∈B S A

∐
x∈BD A�B

y

where the upper horizontal arrow corresponds to the specification of the
identities of the objects of B, and the left vertical arrow to the natural dg-
functor S → D. Suppose now that we have a dg-functor F : A → C that
annihilates B. This induces a dg-functor

∐
x∈BD → C, corresponding to the

nullhomotopies of idFB, for B ∈ B, making the diagram∐
x∈B S A

∐
x∈BD A�B

C

y

commutative. Then the universal property of the pushout provides a dg-

functor A�B → C factoring F . In [Tab10], the author then uses the model
structure on dgcatk to show that this construction extends to Hqe, and

that there the correspondence between quasi-functors A�B → C and quasi-
functors A → C annihilating B is bijective.

One of the main features of dg-quotients that they provide enhancements
to Verdier quotients: we will now explore precisely how. For any dg-category
A, denote H0Apre-tr with Atr; clearly Atr is triangulated, and if A is pretrian-

gulated Atr is equivalent to H0A. Consider the quasi-functor Q : A → A�B;
as in the case of a dg-functor, it induces a quasi-functor

Qpre-tr : Apre-tr →
(
A�B

)pre-tr
and therefore an exact functor

Qtr : Atr →
(
A�B

)tr
that annihilates (in the sense of triangulated categories) Btr ⊆ Atr, where
Btr is the homotopy category of the closure of B under shifts and cones. By
definition of Verdier quotient, Qtr induces a functor

Φ: A
tr
�Btr →

(
A�B

)tr
.
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Theorem 3.88 ([Dri04]). The functor

Φ: A
tr
�Btr →

(
A�B

)tr
.

is an equivalence.

It should be noted that this is equivalent to saying that the quasi-functor

Qpre-tr : Apre-tr →
(
A�B

)pre-tr
induces in homotopy the usual Verdier local-

ization functor (up to equivalence).

Corollary 3.89. Suppose A is pretriangulated. Then any quotient A�B is

pretriangulated. In particular, if B is also pretriangulated, A�B is an en-

hancement of H
0A�H0B.

Proof. We have to prove that the natural inclusion

H0
(
A�B

)
↪→
(
A�B

)tr
is essentially surjective. By definition of Qpre-tr, the diagram

A Apre-tr

A�B
(
A�B

)pre-trQ Qpre-tr

is commutative. This induces the diagram

H0A Atr

H0
(
A�B

) (
A�B

)
.
tr

H0Q Qtr

By the remark below Theorem 3.88, Qtr is essentially surjective. Since the
upper arrow is essentially surjective by hypothesis (being A pretriangulated),
it follows that the composition

H0A H0Q→ H0
(
A�B

)
↪→
(
A�B

)tr
is essentially surjective, therefore the inclusion H0A H0Q→ H0

(
A�B

)
is essen-

tially surjective.
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Example 3.11. If A is a dg-category, the dg-categoryMod -A�Ac(A) is an

enhancement to D(A). Again by Theorem 3.88, the composition

SF(A) ↪→Mod -A →Mod -A�Ac(A)

is a quasi-equivalence: indeed, the composition of the inclusion

H0SF(A)→ HA

with the localization HA → D(A) is an equivalence of categories. In the
following we will often make no distinction between D(A) and H0SF(A),
leaving implicit the equivalence.

3.8 Notes for Chapter 3

Dg-categories appeared fist in the work of Kelly in the context of enriched
category theory, but were not studied in depth until the nineties, with the
works of Keller ([Kel94]) and Drinfeld ([Dri04]). More recently, Tabuada
([Tab05], [Tab10]) and Toën ([Toë07]) have successfully applied methods from
homotopy theory and model categories to develop the homotopy theory of
dg-categories. The idea of dg-categories as enhancements of triangulated
categories was suggested by Bondal and Kapranov in [BK91]. A through
overview of the theory of dg-categories is Keller’s ICM address [Kel06].
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Chapter 4

Uniqueness of enhancements

We are finally ready to discuss the central part of this thesis, the unique-
ness (or lack of thereof) of a dg-enhancement of an algebraic triangulated
category. As was already discussed, it is not entirely obvious what it means
for a triangulated category to have a unique enhancement. After having
introduced the category Hqe, we can however give the following definition:

Definition 4.1. Let T be a k-linear triangulated category. We say that T
admits a unique enhancement if, given two different dg-enhancements (A, ε)
and (B, η), A is isomorphic to B in Hqe.

There exist other (stronger) definitions of uniqueness of an enhancement,
but we will focus on this one. It should be noticed that from a theoretical
perspective this definition is not optimal: after all, the main theme of this
thesis is that when localizing, it makes sense to keep track of “higher mor-
phisms” between objects. On the contrary, our definition of uniqueness is
nothing but a statement about uniqueness in the localized category Hqe,
where we have already forgotten about most of the structure. It is nonethe-
less a challenging question to understand what “higher morphisms” are in
dgcatk; the approach taken for example in [Toë07], is to consider the Dwyer-
Kan localization of dgcatk at the quasi-equivalences. We will not need this
this nuance though, so we will keep dealing with the “localized” category
Hqe.

The hope that any algebraic triangulated category admits a unique dg-
enhancement is quickly proven to be vain.

Example 4.1. Let p be a prime number and let Fp be the field with p ele-
ments. Call Tp the category of vector spaces over Fp. It admits a triangulated
structure, with translation given by the identity functor and as distinguished
triangles all the triangles

X → Y → Z → X
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such that the sequence

· · · → Z → X → Y → Z → X → Y → Z → · · ·

is exact. Let now R1 = Z/p2Z and R2 = Fp[x]/(x2). Denote with
Cai

dg(Rj -Mod) the full dg-subcategory of Cdg(Rj -Mod) with objects the acyclic
complexes with injective components, for j = 1, 2. It can be proved (see for
example [CS17, Section 3.3]) that Cai

dg(R1 -Mod) and Cai
dg(R2 -Mod) are both

dg-enhancements of the category Tp, but are not isomorphic in Hqe.

Remark. In the example above, we have considered the category Tp only
as a Z-linear category; if we want to keep track of the Fp-linearity, we lose
the enhancement Cai

dg(R1 -Mod), since this dg-category is not Fp-linear. This
leads to the natural question: are there triangulated categories, linear over
a field k, with different non-equivalent k-linear dg-enhancement? A positive
answer has been given by Rizzardo and Van den Bergh, who gave in [RB21]
such an example.

Nonetheless, it has been proven that many (in fact, most) interesting alge-
braic triangulated categories admit a unique enhancement: in the last fifteen
years several results of increasing generality have come out, culminating in
the very recent [CNS21]. Here we will explore in detail the first of those to
appear, [LO10], discussing the others in the last chapter.

4.1 Overview of the results

In this section we will suppose k to be a field.

Theorem 4.2 ([LO10]). Let A be a small k-linear category, considered as a
dg-category concentrated in degree 0. Let L ⊆ D(A) be a localizing subcate-
gory. Assume that the following conditions hold:

a) The quotient functor π : D(A)→ D(A)�L admits a right adjoint;

b) For every Y ∈ A, the object π(hY ) is compact in D(A)�L;

c) For every Y, Z ∈ A and for any i < 0, we have

HomD(A)/L(π(hY ), π(hZ)[i]) = 0.

Then the quotient D(A)�L admits a unique enhancement.

Remark. Since D(A) is compactly generated, if we suppose that D(A)�L has
small hom-sets, then by Proposition 1.33 the functor µ exists automatically.
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Remark. If A is an abelian category, in general the derived category of A
seen as dg-category is different from the usual derived category of A. An
element of the first is a chain complex of functors from Aop to the category
of k-modules, while an object of the second is a chain complex of elements
of A. Nonetheless those do have a relationship, that we will briefly explore
later. Unfortunately it is customary to denote both objects as D(A); when
there is ambiguity, we will refer to the dg-version as the dg-derived category
and to the abelian one as simply the derived category .

We will see the proof of this theorem in the following sections: now, we
look at some of his consequences. We will need to briefly introduce some
facts about the localizations of abelian categories: a reference for all of them
is [Gar16], together with section 7 of [LO10].

Let A be a small k-linear category. We can consider the abelian category

Mod -A = Funk(A, k -Mod)

of k-linear functors from A to the category of k-modules. If we consider A
as a dg-category concentrated in degree 0, we find that the dg-category of
dg-modules Mod -A coincides with Cdg(Mod -A), therefore the dg-derived
category D(A) coincides with the (classical) derived category D(Mod -A).

Definition 4.3. Let C be an abelian category. We say that C is a Grothendieck
abelian category, or Grothendieck category, if the following hold:

• C admits all small colimits;

• Direct limits in C of short exact sequences are exact: for any directed
set I and short exact sequences

0→ Ai → Bi → Ci → 0

with i ∈ I, the induced sequence

0→ colim−−−→
i

Ai → colim−−−→
i

Bi → colim−−−→
i

Ci → 0

is exact;

• There exists a set S ⊆ Ob(C) of generators of C, in the sense that for
any object C ∈ C there exists an epimorphism S � C, where S is a
direct sum of objects of S.

Note that we can always suppose for C to admit a single generator, by
taking the direct sum of all the elements in S. As a consequence of the
Gabriel-Popescu theorem ([GP64]) and of [LO10, Lemma 7.2] we have the
following proposition.
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Proposition 4.4. Let C be a Grothendieck category that admits a set of
generators A that are compact in the derived category D(C). Then there
exists a localizing subcategory N ⊆ D(A) and an equivalence of categories

D(C) ∼→ D(Mod -A)�N
where the derived category on the right is to be intended in the dg-sense.
Furthermore, the quotient

D(Mod -A)→ D(Mod -A)�N
satisfies the hypotheses of Theorem 4.2.

Corollary 4.5. Let A be a Grothendieck abelian category such that the de-
rived category D(C) has small hom-sets. Assume further that C has a set of
generators that are compact in the derived category D(C). Then D(C) admits
a unique enhancement.

This has some interesting geometric consequences.

Corollary 4.6. Let X be a quasi-compact and separated scheme that has
enough locally free sheaves. Then the derived category of quasi-coherent
sheaves D(QcohX) admits a unique enhancement.

4.2 Outline of the proof of Theorem 4.2

In this section we give an outline of the main steps of the proof; this will hope-
fully help the reader navigate through the next sections. We also fix some
notation and make some useful constructions. We begin with an important
remark; for how we have proceeded, all of our objects constructions must live
in the category dgcatk, the category of small dg-categories. Nonetheless, of-
ten we will work with categories that are not small: namely, the category
Mod -A is not small even when A is. This is a delicate issue, but we will not
discuss it here, working with arbitrary categories as if they were small. A
through discussion, and a way to solve this issue, is Appendix A of [LO10].
Let us now get to the actual proof.

To begin with, observe that the category D(A)�L has an automatic: de-
noting with L the full dg-subcategory having the same objects as L, the

Drinfeld quotientMod -A�L is an enhancement of D(A)�L. By Proposition

1.29, SF(A)�L ∩ SF(A) is another, equivalent, enhancement. Suppose now

that D(A)�L has another enhancement (C, ε). In order to prove the theo-
rem, it would then suffice to find an isomorphism in Hqe between C and
SF(A)�L ∩ SF(A). This is done in roughly four steps.
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Step 1

The first step is to replace the category C with an equivalent, more manage-
able category: to begin with, since A in concentrated in degree 0, we have
A = Z0A = H0A. Therefore there is a natural sequence of dg-functors

A = H0(A)→ D(A)
π→ D(A)�L

ε→ H0C. (4.1)

Denote with B ⊆ C the full dg-subcategory of C corresponding to the image
of A via this sequence of functors. Notice that, since those are all injective
on the objects, the objects of B are in bijection with those of A. At this
point, we will prove (using the hypotheses of Theorem 4.2) that there is
an isomorphism C ∼→ SF(B) in Hqe. As a consequence, in order to prove
Theorem 4.2 it will be sufficient to prove that there exists an isomorphism
SF(A)�L ∩ SF(A)

∼→ SF(B) in Hqe. For future use, note also that by

definition of B, the composition (4.1) factors through the inclusion H0B ↪→
H0C, hence defining a dg-functor a : A → H0B.

Step 2

In order to find the isomorphism SF(A)�L ∩ SF(A)
∼→ SF(B), we define

a suitable quasi-functor SF(A)→ SF(B), and then use the universal prop-
erty of the Drinfeld quotient to prove that it factors through the quotient
SF(A)�L ∩ SF(A). With this goal in mind, we need to briefly recall a con-

struction: if C is a chain complex, we can define the truncation τ≤0C as the
complex given by

· · · → C−2 → C−1 → Ker d0 → 0→ · · ·

There is a natural chain map i : τ≤0C → C; moreover, the projection Ker d0 →
H0C induces a chain map from τ≤0C to H0C considered as a chain complex
concentrated in degree 0. Following this construction, and taking the dg-
category B as in Step 1, we can define the dg-category τ≤0B by taking the
objects to be the same of B and hom-spaces as the truncations of those of B.

We have then a natural dg-functor p : τ≤0B
i→ H0B, where H0B is seen as

a dg-category concentrated in degree 0. In the hypotheses of Theorem 4.2,
one can prove that p is a quasi-equivalence. There is a zig-zag of dg-functors

A
a→ H0B p← τ≤0B

i→ B

that induces the zig-zag

SF(A)
Inda→ SF(H0B)

Indp← SF(τ≤0B)
Indi→ SF(B).
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Since p is a quasi-equivalence, so is Indp; therefore, the second zigzag defines
a quasi-functor ρ : SF(A)→ SF(B).

Step 3

Here, one has to prove that quasi-functor ρ annihilates L∩SF(A), therefore

defining a quasi-functor SF(A)�L ∩ SF(A)→ SF(B). Thanks to Theorem

3.88, this reduces to proving that the corresponding functor between the
homotopy categories annihilates L ∩D(A); this is strictly a question about
triangulated categories. The proof of this fact is one of the main technical
burdens of the whole argument.

Step 4

To conclude the proof, we have to show that the quasi-functor

SF(A)�L ∩ SF(A)→ SF(B)

is an isomorphism in Hqe. For this, it is sufficient to prove that the induced
functor between the homotopy categories is an equivalence. Again, this is an
issue exclusively about the triangulated side of the question, and again it is
a bit delicate. Nonetheless, applying techniques similar to those of step 3,
one can conclude this step and with it the proof.

4.3 Proof of Theorem 4.2

For the sake of brevity, we will not repeat the constructions done in the
overview of the proof, but only refer to those.

Proof of Step 1

We have to find an isomorphism C ∼→ SF(B) in Hqe. This is easily done:
first observe that, since B ⊆ C, there is a natural dg-functor

Φ: C →Mod -B
C → B(−, P )

that is the composition of the dg-Yoneda embedding B →Mod -B with the
restriction along the inclusion B ↪→ C. We can then compose this with the
quotient and find a quasi-functor

C →Mod -B�Ac(B).
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Since we know that
SF(B)→Mod -B�Ac(B)

is a quasi-equivalence, this defines a quasi-functor C → SF(B) given by the
roof

C →Mod -B�Ac(B)
∼← SF(B).

We now have to prove that this is an isomorphism: clearly, it is sufficient to
prove that the dg-functor

C →Mod -B�Ac(B)

is a quasi equivalence: this will follow from the next lemmas.

Lemma 4.7. Let B ⊆ C, and let

ϕ : C →Mod -B�Ac(B)

as above. Assume that all the objects of B are compact in H0C. Then the
induced functor

H0ϕ : H0C → D(B)

preserves coproducts existing in H0C.

Proof. Recall that H0ϕ is the composition of the map H0Φ: H0C → HB
with the quotient HB → D(B), and the quotient is the identity on objects.
Let now {Ci} be a set of objects of C, and suppose that the direct sum

⊕
iCi

exists in H0C. Take B ∈ B. Since B is compact in H0C, we have natural
isomorphisms

HomD(B)(hB, ϕ
(⊕

i

Ci
)
) ∼= HomHB(hB,Φ

(⊕
i

Ci
)
) ∼= H0(Φ

(⊕
i

Ci
)
(B)) ∼=

∼= H0C(B,
⊕
i

Ci
) ∼= ⊕

i

H0C(B,Ci) ∼=
⊕
i

H0(Φ(Ci)(B)) ∼=

∼= H0
(⊕

i

Φ(Ci)(B)
) ∼= HomHB(hB,

⊕
i

Φ(Ci)) ∼= HomD(B)(hB,
⊕
i

ϕ(Ci)).

Since H0B compactly generates D(B), Lemma 1.18 and the remark above
guarantee that

ϕ
(⊕

i

Ci
) ∼= ⊕

i

ϕ(Ci)

in D(B).
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Remark. By definition of ϕ, the composition

H0B ↪→ H0C H0ϕ→ D(B)

coincides with the derived Yoneda embedding

H0B ↪→ D(B).

Lemma 4.8. Let B ⊆ C, and let

ϕ : C →Mod -B�Ac(B)

as above. Assume that H0C contains arbitrary direct sums and Ob(B) forms
a set of compact generators for H0C. Then the induced functor

H0ϕ : H0C → D(B)

is an equivalence of categories. As a consequence, the induced quasi-functor

H0C → SF(B)

is an isomorphism.

Proof. Since B compactly generates H0C, Lemma 1.19 implies that H0ϕ is
fully faithful. Recall now that any element of D(B) is isomorphic to a semi-
free B modules and any semi-free module can be realized as the cone of a
morphism between coproducts of (images via the Yoneda embedding) shifts
of elements of B. Therefore, since H0ϕ preserves representables, shifts, cones
and coproducts, it is essentially surjective.

In our case, since L ⊆ D(A) is a localizing subcategory, D(A) ∼= H0C
admits arbitrary direct sums. Moreover, by Proposition 1.33 the objects of

B compactly generate H0C ∼= D(A)�L. This concludes the proof of step 1.

Proof of step 2

In this step, most of the work was already done in the overview. It only
remains to prove the following easy lemma.

Lemma 4.9. The natural functor p : τ≤0B → H0B is a quasi-equivalence.

116



Proof. The functor is the identity on the objects, so we only have to prove
that it induces isomorphisms the homologies of the hom-spaces. By defini-
tions those vanish positive degree, and p induces an isomomorphism in degree
0. Therefore, the claim will follow if we prove that H iB(Y, Z) = 0 for all
Y, Z ∈ B and i < 0. Recalling that the objects of B are those of the form
επ(hZ) for some Z ∈ A, we have

H iB(X, Y ) =H iC(επ(hW ), επ(hZ)) = H0C(επ(hW ), επ(hZ)[i]) ∼=
∼= HomD(A)�L

(π(hW ), π(hZ)[i]) = 0,

by condition c).

An intermediate result

We now prove an intermediate result that will not be needed in the proof,
but has some interest of its own sake.

Proposition 4.10. Let A be a small k-linear category considered as a dg-
category concentrated in degree 0. Then the dg-derived category D(A) has a
unique enhancement.

Proof. Let (C, ε) be an enhancement of D(A), and denote as before with B its
full dg-subcategory whose objects correspond to those of A via the functors

A = H0A → D(A)
ε→ H0C.

Since both functors are fully faithful, we have an equivalence A
∼→ H0B. We

have again a zig-zag of dg-functors

A ∼= H0B p← τ≤0B
i→ B.

This time however, it is easy to prove that B has homology concentrated in
degree 0, and therefore both p and i are quasi-equivalences. Indeed, for any
X, Y ∈ B, we have

HnB(X, Y ) ∼= C(X, Y [n]) ∼= D(A)(εX, εY [n]) ∼= D(A)(hA, hB[n])
∼=HnA(A,B) = 0

for some A,B ∈ A. This immediately implies that p and i are quasi-
equivalences, so we also have a zig-zag of quasi-equivalences

SF(A)
Indp← SF(τ≤0B)

Indi→ SF(B).
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that defines an isomorphism in Hqe

SF(A)
∼→ SF(B).

Since by construction the objects of H0B ∼= A form a compact set of gen-
erators for H0C ∼= D(A), lemma 4.8 gives that the natural quasi-functor
C → SF(B) is an equivalence. We have then shown that any enhancement
of D(A) is equivalent to the canonical enhancement SF(A). This concludes
the proof.

As the above example shows, the dg-part of the proof is done: we have
constructed a “good” quasi-functor

ρ : SF(A)→ SF(B).

We still need to show that it induces an equivalence

SF(A)�SF(A) ∩ L → SF(B)

which, by Theorem 3.88, is equivalent to proving that

H0ρ : D(A)→ D(B)

induces an equivalence
D(A)�L→ D(B).

This is done in steps 3 and 4.

Proof of step 3

We have to prove that the quasi-functor

ρ : SF(A)→ SF(B)

factors through the quotient SF(A)�L ∩ SF(A), i.e. that the associated

functor
F1 = H0ρ : D(A)→ D(B).

annihilates L. For this we will need several intermediate results; we begin
with a construction. For a given complex C, we can define its stupid trun-
cations as the complexes

σ≤mC = · · · → Cm−1 → Cm → 0→ · · ·
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and
σ≥nC = · · · → 0→ Cn → Cn+1 → · · ·

We also define

C [n,m] = σ≥nσ≤mC = σ≤mσ≥nC = · · · → 0→ Cn → · · · → Cm → 0→ · · ·

For any fixed m it is easy to show that σ≤mC ∼= colim−−−→n
C [n,m]. We now want

to apply these constructions to semi-free dg A-modules. First, observe that
since A is concentrated in degree 0, a representable A-module hA is also
concentrated in degree 0, in the sense that hA(B) is concentrated in degree
0 for any B ∈ A. Therefore, any free dg A-module C is an actual complex

· · · → Cn → Cn+1 → Cn+2 → · · ·

where every Ci is a direct sum of shifts by i of representables and the differ-
ential is zero. From this follows that any semi-free dg A-module P is a chain
complex

· · · → P n → P n+1 → P n+2 → · · ·
where each P i is a direct sum of shifts by i of representables. This time how-
ever we have no information about the differential, since the sequences in the
definition of semi-free module split only at the graded level. Furthermore,
any bounded above complex of this form is automatically semi-free, by con-
sidering the filtration induced by the grading; we will denote with SF−(A)
the full dg-subcategory ofMod -A composed by bounded above semi-free dg
A-modules. Now, for any dg A-module P we can define its the truncations
σ≤mP and σ≥nP by via the obvious definitions on objects, and in the same
way we can define P [n,m]. The discussion above implies that the truncations
of a semi-free A-modules are again semi-free. Furthermore, we have an iso-
morphism σ≤mP ∼= colim−−−→n

P [n,m] in CA. If P is semi-free, this implies that

there is also an isomorphism σ≤mP ∼= hocolim−−−−−→n
P [n,m] in H0SF(A) ∼= D(A).

Lemma 4.11. Let F : H0SF(A)→ T be an exact functor between triangu-
lated categories, and suppose that F satisfies the following conditions:

1. F preserves direct sums.;

2. F (hA) is compact in T for any A ∈ A;

3. HomT (F (hA), F (hB)[i]) = 0 for any A,B in A and i < 0.

Then, for any A ∈ A and P ∈ SF(A) we have

HomT (F (hA), F (σ≥nP )[i]) = 0

for any i < n.
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Proof. The filtration Fj on P induces a filtration Ej = Fj ∩σ≤mP on σ≤mP ,
in a way that the quotient Ej+1/Ej has the form

⊕
k hBk

[sk] for some Bk in
A and sk ≤ −n. We prove by induction that

HomT (F (hA), F (Ej+1/Ej)[i]) = 0

for each j. The base step is obvious since E0 = 0. For the inductive step,
recall that since F is exact we have a a distinguished triangle

F (Ei)[i]→ F (Ei+1)[i]→ F (Ei+1/Ei)[i]→ F (Ei)[i+ 1],

so it is sufficient to prove that

HomT (F (hA), F (Ei+1/Ei)[i]) = 0

for any i. Using hypotheses 1-3, we have

HomT (F (hA), F (Ej+1/Ej)[i]) = HomT (F (hA), F (
⊕
k

hBk
[sk])[i]) ∼=

∼= HomT (F (hA),
⊕
k

F (hBk
[sk + i])) ∼=

⊕
k

HomT (F (hA), F (hBk
[sk + i])) ∼=

∼=
⊕
k

HomT (F (hA), F (hBk
)[sk + i]) = 0,

since sk + i < n. To conclude, recall that P ∼= colim−−−→j
Ej in Z0SF(A), so

P ∼= hocolim−−−−−→Ej in H0SF(A). Since F is exact and preserves coproducts, it
also preserves homotopy colimits. Therefore, F (P ) ∼= hocolim−−−−−→j

F (Ej). Now,

a direct application of Lemma 1.22 finishes the proof.

Corollary 4.12. In the same hypotheses of Lemma 4.11, for every A ∈ A,
P ∈ SF(A) and every m ≥ 0 we have an injection

HomT (F (hA), F (P )) ↪→ HomT (F (hA), F (σ≤mP ))

If m > 0, this is a bijection.

Proof. This follows immediately from what we just proved and from the
existence of the distinguished triangle in H0SF(A)

σ≥(m+1)P → P → σ≤mP → σ≥(m+1)P [1].
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Proposition 4.13. Let F1, F2 : H0SF−(A) → T be two exact functors sat-
isfying the hypotheses of Lemma 4.11. Suppose also that there is a natural
isomorphism F1 ◦hA ∼= F2 ◦hA. Then for every P ∈ SF−(A) there exists an
isomorphism

θP : F1(P )
∼→ F2(P )

such that for any A ∈ A and every k ∈ Z and f ∈ HomH0SF−(A)(hA[−k], P )
with k ∈ Z the diagram

F1(hA)[−k] F1(P )

F2(hA)[−k] F2(P )

F1(f)

θA[−k] θP

F1(f)

(4.2)

commutes.

We omit the full proof of this Proposition, referring to [LO10, Proposition
3.4] for the details. We still give below a brief sketch of the construction of
the isomorphism θP .

Sketch of the proof. The isomorphism θP is constructed in steps: first one
uses the fact that F1 and F2 preserve coproducts to extend θ from the rep-
resentables (where it exists by hypothesis) to the full subcategory formed
by coproducts of representables. Then one considers an arbitrary bounded
above semi-free dg A-module

· · · → Pm−1 → Pm → 0,

and uses the existence of the distinguished triangle

P n−1[−n]→ σ≥nP → σ≥n+1 → P n−1[−n+ 1]

to define, by descending induction on n ≤ m, an isomorphism

θ≥n : F1(σ≥nP )
∼→ F2(σ≥nP ).

At this point, one uses the fact that P ∼= hocolim−−−−−→n
σ≥nP to extend the

isomorphism to all of SF−(A). Finally, one proves that the just defined
isomorphism makes diagram (4.2) commute.

Recall now that we had defined the dg functor

a : A → H0B
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that, by a slight abuse of notation (since the image of ε is not in general
contained in H0B), can be represented as the composition

A = H0A → D(A)→ D(A)�L
ε→ H0B

Recall also that the quasi-functor

ρ : SF(A)→ SF(B)

was defined as the zig-zag

SF(A)
Inda→ SF(H0B)

Indp← SF(τ≤0)B
Indi→ SF(B).

We call F1 = H0ρ : D(A) → D(B). It is easy to prove that F1 satisfies
conditions 1 to 3 of Lemma 4.11: for condition 1, observe that Indp is a
quasi-equivalence, while Inda and Indi are right adjoints and thus preserve
coproducts. Condition 2 follows from the fact that F1 sends H0A ⊆ D(A)
to H0B ⊆ D(B), and the objects of H0B are always compact in D(B).
Condition 3 follows from the equivalent hypothesis imposed on the quotient

D(A)
π→ D(A)�L. Define now the functor F2 as the composition

D(A)
π→ D(A)�L

ε→ H0C H0ϕ→ D(B).

F2 also satisfies conditions 1-3: by Lemma 4.7 it preserves coproducts; Fur-
thermore, by definition of a the diagram

A D(A) D(A)�L H0C D(B)

H0B

∼ H0ϕ

a

F2

(4.3)

is commmutative, so F2 sends objects of A to images via the derived Yoneda
embedding of objects of B, which are always compact. Finally, condition 3
follows from the equivalent condition imposed to the quotient.

It is easy to prove the following:

Lemma 4.14. There exists a natural isomorphism

θ : F1 ◦ hA
∼→ F2 ◦ hA.
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Proof. The commutativity diagram (4.3) is equivalent to saying the the com-
position

A ↪→ D(A)
F2→ D(B)

coincides with
A a→ H0B ↪→ D(B).

Recall that ρ (and therefore F1) was constructed starting from the zig-zag

A H0B τ≤0B B.a p i

By Proposition 3.37, the induced diagram

A H0B τ≤0B B

SF(A) SF(H0B) SF(τ≤0B) SF(B)

a p i

Inda Indp Indi

commutes up to isomorphism. Passing to the homotopy categories and using
the fact that H0τ≤0B = H0(H0B) = H0B, we get that the diagram

A H0B H0B H0B

D(A) D(H0B) D(H0B) D(B)

a

commutes (always up to isomorphism). The commutativity of the outer
rectangle, together with the observation made at the beginning of the proof,
concludes the argument.

We then have the following proposition, that concludes the proof of step
3.

Proposition 4.15. F1 : D(A) → D(B) annihilates L ⊆ D(A). Therefore,

the quasi-functor ρ factors through the quotient SF(A)�L ∩ SF(A).

Proof. In this proof the crucial observation is that, by definition, the functor
F2 annihilates L. So what we have to do is use this information to prove that
F1 does as well. Since F1 sends surjectively H0A ⊆ D(A) to H0B ⊆ D(B),
the set {F1(hA)}A∈A is a set of compact generators for D(B). Take now any
P ∈ SF(A) ∩ L. To prove that F1(P ) = 0 it is therefore sufficient to prove
that

HomD(B)(F1(hA)[k], F1(P )) = 0
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for any k ∈ Z and A ∈ A. Consider the truncation σ≤mP for some m ≥ k.
By Corollary 4.12, we have a bijection

HomD(B)(F1(hA)[k], F1(P )) ∼= HomD(B)(F1(hA)[k], F1(σ≤mP ));

this is useful since σ≤mP ∈ SF−(A), and we can apply Proposition 4.13
to find an isomorphism F1(σ≤mP ) ∼= F2(σ≤mP ). Of course we also have an
isomorphism F1(hA) ∼= F2(hA). Therefore,

HomD(B)(F1(hA)[k], F1(P )) ∼= HomD(B)(F2(hA)[k], F2(σ≤mP ))

and again by Corollary 4.12

HomD(B)(F2(hA)[k], F2(σ≤mP )) ∼= HomD(B)(F2(hA)[k], F2(P )) ∼= 0.

This concludes the proof.

Proof of step 4

We have proved that the quasi-functor ρ factors through a quasi-functor

ρ̃ : SF(A)�L ∩ SF(A)→ SF(B).

Call F the exact functor

H0ρ̃ : D(A)�L→ D(B).

We already know that the functor F1 is isomorphic to the composition F ◦π.
In order to prove that ρ̃ is an isomorphism (and hence the theorem) it only
remains the following

Proposition 4.16. The functor F : D(A)�L→ D(B) is an equivalence.

Proof. Be begin with full faithfulness. By Lemma 1.33, The elements {πhB}B∈B
form a set of compact generators for D(A)�L. Moreover, the functor F co-
incides with F1 on objects; therefore Lemma 4.14 and diagram (4.3) show
that F1 carries (images via the quotient of) representable A-modules to rep-
resentable B-modules.

So, by Lemma 1.19, to prove that F is fully faithful it is sufficient to
prove that

F : HomD(A)�L
(πhA, πhB)→ HomD(B)(FπhA, FπhB)
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is a bijection for all A,B ∈ A. We proceed by several simplifications. First,
we recall that π admits a fully faithful right adjoint µ. Since µ is fully faithful,
the counit

idD(A)�L
→ πµ

is an isomorphism. Call P = µπhB ∈ D(A); we can clearly suppose P to
be semi-free. We then have a natural isomorphism hB → P , so πhB ∼= πP .
Moreover, P ∈ L⊥, since for any K ∈ L we have

HomD(A)(K,P ) = HomD(A)(K,µπhB) ∼= HomD(A)�L
(πK, πhB) = 0.

Therefore by Proposition 1.31,

π : HomD(A)(hA, P )→ HomD(A)�L
(πhA, πP )

is an isomorphism. Consider now the stupid truncation σ≤mP , for some
m > 0. We then have a short exact sequence in Z0SF(A)

0→ σ≥m+1P → P → σ≤mP

that gives an exact triangle

σ≥m+1P → P → σ≤mP → σ≥m+1P [1]

in D(A). Since by the dg-Yoneda lemma

HomD(A)(hA, σ≥m+1P ) ∼= H0σ≥m+1P (A) = 0,

we get that the natural map

HomD(A)(hA, P )→ HomD(A)(hA, σ≤mP )

is an isomorphism. Consider then the commutative square

HomD(A)(hA, P ) HomD(A)�L
(πhA, πP )

HomD(A)(hA, σ≤mP ) HomD(A)�L
(πhA, πσ≤mP )

∼

∼

π

∼

The right vertical arrow is an isomorphism by Corollary 4.12, so the lower
horizontal arrow is as well. Recall now that by Lemma 4.14 and Proposition
4.13 there are isomorphisms

θA : F1(hA)→ F2(hA) and θ≤m : F1(σ≤mP )→ F1(σ≤mP )
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such that the diagram

HomD(A)(hA, σ≤mP ) HomD(A)(hA, σ≤mP )

HomD(B)(F1(hA), F1(σ≤mP )) HomD(B)(F2(hA), F2(σ≤mP ))

F1

θ≤m ◦ θ−1
A

F2

commutes. Since F1 = F ◦ π and F2 = H0(ϕ) ◦ ε ◦ π we get the commutative
diagram

HomD(A)(hA, σ≤mP ) HomD(A)(hA, σ≤mP )

HomD(A)�L
(πhA, πσ≤mP ) HomD(A)�L

(πhA, πσ≤mP )

HomD(B)(F1(hA), F1(σ≤mP )) HomD(B)(F2(hA), F2(σ≤mP ))
θ≤m ◦ θ−1

A

π

F

π

H0ϕ ◦ ε

The key observation now is that all the arrows, except possibly F , are
isomorphisms: we have already seen that π is an isomorphism, and by Lemma
4.8 H0ϕ is fully faithful. Therefore F as well is an isomorphism, and we
have proved full faithfulness. Essential surjectivity is proved as usual: first
we observe that, since F1 preserves coproducts and F coincides with F1

on objects, F preserves coproducts as well. Therefore the image of F is
a localizing subcategory of D(B) that contains H0B, so it has to be all of
D(B).

4.4 Further results

In the years following the publication of [LO10], several generalizations have
been found. In this section, we give a short overview of those.

An important observation is that the proofs of [LO10] rely heavily on the
compact generation of some triangulated categories. The problem is that
this class is not very flexible: in general, quotients of compactly generated
categories might fail to be compactly generated. Moreover, it was known (see
[Nee01a]) that derived categories of sheaves could fail to be compactly gener-
ated. On the other hand, Neeman had introduced in [Nee01b] the notion of
a well-generated triangulated category, which can be considered as a gener-
alization of that of compactly generated category to uncountable cardinals.
Well generated triangulated categories have several desirable properties: to
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begin with, one can prove that the derived category of any Grothendieck
category is always well generated, and that well generated triangulated cat-
egories are closed under localizations; crucially, well generated triangulated
categories also admit a form of Brown’s representability theorem. Apply-
ing these techniques, Canonaco and Stellari in [CS18] proved the following
generalization of Corollary 4.5:

Theorem 4.17. The derived category D(C) of any Grothendieck abelian cat-
egory admits a unique dg-enhancement.

This has the very pleasing consequence

Corollary 4.18. Let X be any scheme. Then the derived category D(QcohX)
has a unique enhancement.

The strategy of the proof of Theorem 4.17 is very similar to that of Corol-
lary 4.5: it relies on a technical result analogous to Theorem 4.2, whose proof
has the same structure to the one we saw; the main differences comes from
the fact that, in [CS18], the authors work with well generated triangulated
categories rather than with compactly generated ones. This causes some no-
ticeable differences in the proof. Note also that here (as well as in all the
subsequent papers) k is allowed to be an arbitrary commutative ring, and
not necessarily a field.

Stable ∞-enhancements

We have already recorded the fact that there exist several different types of
enhancements besides dg-enhancements; one that has been gaining popular-
ity is Lurie’s theory of stable∞-categories. We do not give a full definition of
those; for our very limited scopes, it is sufficient to say that any ∞-category
C induces an ordinary category Ho C, called the homotopy category of C; if
C is stable1, then Ho C is in a natural way triangulated (so in particular ad- 1Note that

being stable is a
property, not extra
structure.

ditive). One can then can talk about stable ∞-enhancement of triangulated
categories: as in the case of dg-categories (in fact, arguably even more nat-
urally) there is a notion of equivalence of ∞-categories; therefore, it makes
sense to talk about uniqueness of stable ∞-enhancements.

In a very imprecise sense, stable∞-categories can be considered as gener-
alizations of dg-categories to non-linear settings; it has been proven (see for
example [Coh16]) that, if we impose to stable ∞-categories the extra struc-
ture of k-linearity for a field k (namely, by enriching them in Hk-module
symmetric spectra), they become equivalent - in a suitable sense - to dg-
categories. However, even if the theory is in principle equivalent, the prac-
tice (and language) of ∞-categories and dg-categories is very different. In
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[Ant18], Antieau proved the uniqueness of the stable∞-enhancement of sev-
eral triangulated categories of algebraic origin; furthermore, he proved that
this implies that they also have a unique dg-enhancement. To make an ex-
ample, he proved the following:

Theorem 4.19. Let C be a small abelian category. Then Db(C) admits a
unique stable ∞-enhancement.

The reader will notice that this is the fist time that we talk about en-
hancements of bounded derived categories; this is not because their study is
not present in the literature; in both [LO10] and [CS18] appear results about
the uniqueness of enhancements of bounded derived categories. However,
the techniques shown in this thesis do not make it particularly easy to study
those2. As a consequence, the results prior to Theorem 4.19 had various 2Possibly for

the fact that the
derived category
of a dg-category
is by definition
unbounded.

technical hypotheses attached to them, mainly in order to trace back to the

more manageable case of
(
D(A)�L

)c
, the subcategory of compact objects of

a quotient of the dg-derived category of an ordinary category.
The proofs in [Ant18] are very different in spirit to those in [LO10] and

[CS18]; they rely on the theory of prestable∞-categories developed by Lurie
in [Lur18, Appendix C]. In particular, they make heavy use of t-structures
in triangulated categories (see [GM02]) and of a Gabriel-Popescu theorem
for prestable ∞-categories. In [GG21], the authors prove similar results for
dg-categories, and apply them to recover the uniqueness of the enhancement
for the derived category of a Grothendieck category.

Back to the dg-world

Very recently, in [CNS21] Canonaco, Neeman and Stellari, going back to
the dg-setting, have shown several generalizations of the theorems above. In
particular, they proven the following

Theorem 4.20. Let C be a small abelian category. Then the derived cate-
gories D(C), Db(C), D+(C) and D−(C) all have unique dg-enhancements.

Since for any small abelian category C there exists a small abelian category
A with an equivalence D(A) ∼= K(C) (see [CNS21, Remark 1.3]), Theorem
4.20 implies the following

Corollary 4.21. Let C be an abelian category. Then the homotopy categories
K(C), Kb(C), K+(C) and K−(C) all have unique dg-enhancements.

Their paper contains both new proofs of theorems present in [Ant18] and
new results; in particular, the uniqueness of the enhancement for D(C) for an
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arbitrary abelian category is a new result. All the proofs in [CNS21] are done
entirely in the realm of dg-categories, using ideas and techniques recalling
those shown in this thesis. Crucially though, the authors use a completely
different type of generation that allows them to discard all the hypotheses
on C, but makes the proof considerably more technically demanding.

Now what?

In a sense, Theorem 4.20 closes a decade-old question; at this point there
are no obvious generalization to be proven; it is known that quotients and
subcategories of categories with a unique enhancement might fail to have a
unique enhancement, so there is no hope for any far reaching generalization in
that direction. There are, of course, still a lot of open questions; for example,
in [CNS21] the authors make several examples of categories for which it is not
know whether they admit a unique enhancement, namely categories of matrix
factorizations linear over a field and admissible3 subcategories of categories 3A triangulated

subcategory admis-
sible if the inclu-
sion functor admits
both a left and a
right adjoint.

with a unique enhancement that are again linear over a field; in both cases,
if one drops the hypothesis for k to be a field, counterexamples are known.

Exact functors and lifts

A very natural question that we have not approached is that of the existence
of lifts of exact functors: given an exact functor between the homotopy cate-
gories of two pretriangulated dg-categories, does it lift to a quasi-functor be-
tween the two dg-categories? Here, the situation is less ideal than in the case
of enhancements. While the space of quasi-functors between dg-categories
has a very explicit description (see Theorem 3.83), exact functors between
triangulated categories are harder to characterize: most functors that one
encounters in practice admit lifts, but even in very natural cases have been
found examples (see [RBN19] and [Nee92a]) of exact functors that do not
admit a lift. There exist some partial results of existence of lifts (mainly in
the case of fully faithful functors) but no general characterization.
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n-boundary, 46
n-cycle, 46

acyclic chain complex, 6, 21, 47,
110

associator, 42, 52

bifibrant object, 29
Bousfield localization, 24, 110, 125
Brown representability Theorem,

24
for compactly generated

triangulated categories, 18
for well-generated triangulated

categories, 127

category
2-category, 44, 54
derived category

bounded, 21, 128
bounded above, 21
bounded below, 21
of a dg-category, 84, 111,

117
of a Grothendieck category,

112, 127, 128
of an abelian category, 7, 82,

111
enriched category, 43
graded category, 51
Grothendieck abelian

category, 111, 112, 127,
128

homotopy category of chain
complexes

bounded, 8, 128
bounded above, 8, 128
bounded below, 8, 128

homotopy category of
dg-modules, 70

idempotent complete, 36
model category, 27

on small dg-categories, 101,
105

stable, 82
monoidal category, 42

closed, 48–50, 52, 56, 103
of chain complexes, 47
of exact triangles, 38
of morphisms, 34
triangulated category, 9

algebraic, 82, 83
compactly generated, 16, 18,

24, 84, 110, 116, 126
topological, 82
well-generated, 126

chain complex
in an abelian category, 5
of k-modules, 46

chain map, 6, 46, 47
cofibrant

object, 27
replacement, 27, 101

cofibration, 26
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acyclic, 26
compact object, 15
cone, 80

functor, 38
of a chain map, 8
of a dg-natural transformation

between dg-modules, 71
of a morphism in a

triangulated category, 10,
12, 35

contractible object, 104
cylinder object, 28

derived Yoneda embedding, 70, 88
dg-Yoneda embedding, 62
dg-Yoneda Lemma, 60
differential graded (dg)

algebra, 52, 58
bimodule, 64

quasi-representable, 102
category, 51

h-flat, 101, 105
opposite dg-category, 52
pretriangulated dg-category,

77, 89, 107
strongly pretriangulated

dg-category, 77
enhancement of a triangulated

category, 81
uniqueness of the, 101, 109,

112, 117, 127, 128
functor, 54
module, 58

acyclic, 83, 85
corepresentable, 59
free, 59
h-injective, 96
h-projective, 85
representable, 59
semi-free, 86
total dg-module, 93

natural transformation, 56
Drinfeld quotient, 104

fibrant
object, 27, 31, 101
replacement, 27

fibration, 26
acyclic, 26

filtration, 86, 88
Frobenius category, 70
functor

quotient, 1
cohomological, 13, 14, 20
exact, 12, 15, 78, 129
homological, 12–14, 20, 33
quotient, 5, 20, 21, 23, 24, 110

Gabriel-Popescu Theorem, 111
for dg-categories, 128
for prestable ∞-categories,

128
graded
A-module, 59
functor, 54
module, 45
morphism, 46
natural transformation, 55, 59

graded split short exact sequence,
72, 73, 78, 86

h-injective resolution, 96
homotopy

between morphisms in a
model category, 29

colimit, 19, 85, 119
of chain maps, 6

induction dg-functor, 69
internal hom

in a closed monoidal category,
49

of chain complexes, 48
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localization, 1

metric space, 45
model structure, 26
multiplicative system, 3

compatible with the
triangulation, 19

nullhomotopy, 6, 9, 51, 72, 104,
105

path object, 28
pretriangulated hull, 80

quasi-equivalence, 97, 101
quasi-functor, 103
quasi-isomorphism, 6–8, 19, 20,

47, 83, 97

restriction dg-functor, 68

semi-free resolution, 89
shift

functor, 9
in a dg-category, 77
of a chain complex, 47
of a chain omplex, 6
of a dg-module, 59

stable ∞-enhancement, 127
subcategory

admissible, 129
annihilated, 21, 104, 106, 114,

123

localizing, 14, 16, 21, 110
orthogonal, 22, 85, 96
thick, 14
triangulated subcategory, 20,

22, 77, 82

t-structure, 128
tensor product

in a monoidal category, 42, 43
of chain complexes, 47, 48
of dg-categories, 56

derived, 101
of dg-modules, 64
of triangulated categories, 33,

57
of vector spaces, 43

truncation
of a chain complex, 113
of a dg-category, 113
stupid truncation

of a chain complex, 118
of a dg-category, 118

Verdier quotient, 21, 24, 82, 84,
104, 106, 107

walking arrow, 34, 105
weak colimit, 35
weak equivalence, 26
weak limit, 35
weakly initial object, 35
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Symbols

HomC(A,B) or C(A,B) Space of morphisms between objects A and B
in a category C

Homk(A,B) Set of morphisms between the k-modules A
and B

C[S−1] Localization of a category C at a class of mor-
phisms S

ZnA n-cycles of a chain complex A
BnA n-boundaries of a chain complex A
HnA n-th homology of a chain complex A
C(k) Category of chain complexes of k-modules A
K(k) Homotopy category of chain complexes of k-

modules
C(A) Category of chain complexes in an abelian cat-

egory A
K(A)+, K(A)−, K(A)b and K(A) Bounded below, bounded above, bounded and

unbounded homotopy category of an abelian
category A

D(A)+, D(A)−, D(A)b and D(A) Bounded below, bounded above, bounded and
unbounded derived category of an abelian cat-
egory A

D(A) Derived category of a dg-category A
• → • Walking arrow category
Mor(C) Category of morphism of a category C
Ab Category of abelian groups
hocolim−−−−−→Xi Homotopy colimit of a sequence Xi

FT S or FS Class of morphisms in T whose cone lies in a
triangulated subcategory S

A�B Verdier quotient of a triangulated category
A by a triangulated subcategory B, or Drin-
feld quotient of a dg-category A by a full dg-
subcategory B
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S⊥ and ⊥S Orthogonal subcategories to a triangulated
subcategory S

B ∧ I Cylinder object for an object B
BI Path object for an object B
Ccf Full subcategory of bifibrant objects of a

model category C
VectK Category of vector spaces over a field K
Set Category of sets
k-Mod Category of modules over a commutative ring

k
Hom(A,B) Internal hom of chain complexes, or dg-

categories of dg-functors between dg-
categories

[A,B] Internal hom in an arbitrary closed monoidal
category

⊗ Tensor product of chain complexes, k-modules
of dg-categories

A0 Category with the same objects of the dg-
category A and with morphism being the de-
gree 0 morphisms of A

Z0A and Z0F Underlying category of the dg-category A, or
functor between the underlying categories by
a dg-functor F

H0A and H0F Homotopy category of the dg-category A, or
functor between the homotopy categories in-
duced by a dg-functor F

dgcatk Category of small k-linear dg-categories, for a
commutative ring k

Natdg(F ,G) Chain complex of graded natural transforma-
tion between the dg-functors F and G

Cdg(k) C(k) considered as a dg-category
Cdg(A) C(A) considered as a dg-category
Aop Opposite dg-category of a dg-category A
Mod -A Dg-category of right dg A-modules
HA H0Mod -A
C(A) Z0Mod -A
Mod -Agr Abelian category of graded A-modules

hA and h̃A A(−, A) and A(A,−)
hA Dg-Yoneda embedding
M ⊗A N Tensor product of a right dg A-module and a

left dg A-module
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Hom(X,−) Dg-functor sending the right dg B-module N
to the right dg A-module Natdg(X(A,−), N)
for an A-B bimodule X

ResF Restriction dg-functor
IndF Induction dg-functor
C(f) Several instances of a cone: the (strict) cone

in the sense of homological algebra if f is a
chain map or a dg-natural transformation, an
arbitrary cone in the sense of triangulated cat-
egories otherwise

Apre-tr Pretriangulated hull of a dg-category A
Atr H0Apre-tr
B Essential image of the dg-Yoneda embedding

B →Mod -B
B Essential image of the derived Yoneda embed-

ding B → D(B)

B̂ Essential image of the derived Yoneda embed-
ding B → HB

rep(A,B) Full subcategory of D(Aop ⊗ B) spanned by
right quasi-representable bimodules

repdg(A,B) Dg-enhancement of rep(A,B)
TotP• Total dg-module
h-proj(A) Dg-category of h-projective right dg A-

modules
SF(A) Dg-category of semi-free right dg A-modules
Hqe Localization of dgcatk at the quasi-

equivalences
⊗L Derived tensor product of dg-categories, or de-

rived tensor product of dg A-modules
RHom(A,B) Internal hom of (Hqe,⊗L)
Fp Field with p elements for a prime p
Tp Category of Fp-modules considered as a trian-

gulated category
Cai

dg(R -Mod) Dg-category of acyclic complexes of R-
modules with injective components

Mod -A Funk(A, k -Mod) for a k-linear category A
σ≤mA and σ≥mA Stupid truncations of a chain complex or dg-

module A
A[n,m] σ≥nσ≤mA
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τ≥0A and τ≤0A Truncations of a chain complex or of a dg-
category A
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