Exercise 1

Determine whether these functions lie in the Schwartz space $\mathscr{S}(\mathbb{R})$:

$$
|x|^{-12}, e^{-|x|}, e^{-|x|^{2}}
$$

Exercise 2

Recall that in the last session we defined a metric d in the Schwartz space $\mathscr{S}(\mathbb{R})$ with the property that a sequence ϕ_{n} converged to $\phi \in \mathscr{S}(\mathbb{R})$ precisely when

$$
\left\|x^{a} \partial^{b}\left(\phi_{n}-\phi\right)\right\|_{L^{\infty}} \rightarrow 0
$$

for all a, b. Show that the following operators $\mathscr{S}(\mathbb{R}) \rightarrow \mathscr{S}(\mathbb{R})$ are continuous:

- The derivative ∂;
- The translation $\tau_{h}(\phi)(x)=\phi(x-h)$;
- The multiplication by a polynomial $p(x)$.
- The Fourier Transform \mathcal{F}.

Exercise 3

A tempered distribution is a continuous linear functional $u: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{C}$. The space of tempered distributions is denoted with $\mathscr{S}^{\prime}(\mathbb{R})$.

It is a useful fact that a linear functional $u: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{C}$ is continuous if and only if there exist C, a, b such that

$$
|u(\phi)| \leq p_{N}(\phi)
$$

for all $\phi \in \mathscr{S}(\mathbb{R})$. Optional: prove this fact. If $u: \mathbb{R} \rightarrow \mathbb{C}$ is a function, define the operator

$$
T_{u}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{C}
$$

as $T_{u} \phi=\int u \phi d x$. Show that the following operators are tempered distributions:

- T_{u} for u in the space $L^{\infty}(\mathbb{R})$ of bounded functions;
- T_{u} for u in $L^{p}(\mathbb{R})$ for $p \in[1, \infty)$. For this, you can use that for any Schwartz function ϕ and any $q \in[1, \infty]$ there exists an N such that $\|\phi\|_{L^{q}} \leq p_{N}(\phi)$.
- (Optional) T_{u} for u of the form $p(x) v(x)$ for a polynomial p and v in some L^{p}.
- The Dirac delta $\delta_{0}(\phi)=\phi(0)$.
- If u is a tempered distribution, its distributional derivative

$$
\partial u(\phi)=-u(\partial \phi)
$$

and its translation

$$
\tau_{h} u(\phi)=u\left(\tau_{-h}\right)
$$

- If u is a tempered distribution and $p(x)$ a polynomial, the multiplication

$$
p u(\phi)=u(p(x) \phi)
$$

Exercise 4

Let

$$
H(x)= \begin{cases}1 & x>0 \\ 0 & x \leq 0\end{cases}
$$

Show that T_{H} is a tempered distribution. Show that $\partial T_{H}=\delta_{0}$.

Exercise 5

Recall that if a function $\phi \in \mathscr{S}(\mathbb{R})$ then its Fourier Transform $\mathcal{F} \phi$ lies in $\mathscr{S}(\mathbb{R})$ as well. This means that if $u \in \mathscr{S}^{\prime}(\mathbb{R})$ is a tempered distribution, we can define its Fourier transform

$$
\mathcal{F} u(\phi)=u(\mathcal{F} \phi) .
$$

and similarly the conjugate Fourier transform

Show that:

- $\overline{\mathcal{F}} \mathcal{F}=\mathcal{F} \overline{\mathcal{F}}=2 \pi \mathrm{Id} ;$
- $\mathcal{F}(x u)=i \partial \mathcal{F}(u)$ and $\mathcal{F}(\partial u)=i \omega \mathcal{F}(u) ;$
- $\mathcal{F}\left(\tau_{h} u\right)=e^{-i h \omega} \mathcal{F}(u)$ and $\mathcal{F}\left(e^{i h x} u\right)=\tau_{h} \mathcal{F} u ;$

Compute the Fourier transforms of the following distributions:

- T_{u} for $u \in L^{1}(\mathbb{R})$;
- The Dirac delta δ_{0};
- T_{p} for a polynomial $p(x)$ (Hint: what is $\mathcal{F} T_{1}$? What is $\mathcal{F} T_{x}$?);
- $T_{e^{i x}}$;
- $T_{\cos x}$.

