Ex 1

Consider the function

$$
f(x)= \begin{cases}\cos x & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ 0 & |x| \geq \frac{\pi}{2}\end{cases}
$$

You can assume that

$$
\hat{f}(\omega)=\frac{2 \cos \left(\frac{\pi}{2} \omega\right)}{\omega^{2}-1}
$$

(optional: prove it!). Compute the integral

$$
\int_{-\infty}^{\infty} \frac{\cos \left(\frac{\pi}{2} y\right)}{1-y^{2}} d y
$$

Ex 2

Show that if $f \in L^{1}(\mathbb{R})$, then

$$
\lim _{\omega \rightarrow \infty} \hat{f}(\omega)=0
$$

For this exercise you can assume the fact that $\mathscr{S}(\mathbb{R})$ is dense in $L^{1}(\mathbb{R})$ in the L^{1} norm.

Ex 3

Show that the only possible eigenvalues of the fourier transform are

$$
\{\sqrt{2 \pi},-\sqrt{2 \pi}, \sqrt{2 \pi} i,-\sqrt{2 \pi} i\}
$$

Optional: show that these are indeed eigenvalues by finding the related eigenfunctions.

Ex 4

Let $f, g \in \mathscr{S}(\mathbb{R})$. Define for any $k \geq 0$

$$
p_{k}(\phi)=\max _{|a|,|b|<k}\left\|x^{a} \partial^{b} \phi\right\|_{L^{\infty}}
$$

and

$$
d(f, g)=\sum_{k \geq 0} 2^{-k} \frac{p_{k}(f-g)}{1+p_{k}(f-g)}
$$

Show that

- d defines a metric on $\mathscr{S}(\mathbb{R})$.
- A sequence $\left\{f_{n}\right\}$ converges to f according to the metric d if and only if

$$
p_{j}\left(f_{n}-f\right) \rightarrow 0 \quad j \geq 0
$$

