
Exercise Session 10 - Solutions
Algebraic Topology 2024-2025

29 April, 2025

Solution to Exercise 1. The statement is false. We wish to show that there exists
a space X, with contractible subspaces A,B ⊆ X with X = A∪B such that A∩B
is contractible, but X itself is not contractible.

Let X = S1 ⊆ C be the circle, and let A and B be an open and a closed arc
respectively, whose intersection is a half-open arc. For example, define

A = {eiθ ∈ S1 | 0 < θ < 3π/2} and B = {eiθ ∈ S1 | π ≤ θ ≤ 2π}

Then clearly A ∪ B = S1 and we have A ∩ B = {eiθ ∈ S1 | π ≤ θ < 3π/2}. So A,
B and A ∩B are all contractible, but S1 is not.

Solution to Exercise 2. The statement is true. We wish to show that there exists
an exact sequence over Z of the form:

0 Z/4Z Z/8Z⊕ Z/2Z Z/4Z 0
f g

Define

f : Z/4Z → Z/8Z⊕Z/2Z : n 7→ (2n, n) and Z/4Z⊕Z/2Z → Z/4Z : (m,n) 7→ m+2n

Note that these are well-defined Z-linear maps. Further,

� f is injective. Indeed, take n ∈ Z/4Z = {0, 1, 2, 3} such that f(n) = (2n, n) =
(0, 0) in Z/8Z⊕Z/2Z, that is 2n ≡ 0 mod 8 and n ≡ 0 mod 2. This is only
possible for n = 0 in Z/4Z.

� Im f ⊆ Ker g. It suffices to show that g◦f = 0. So for n ∈ Z/4Z, we calculate
g(f(n)) = g(2n, n) = 2n+ 2n = 4n = 0 in Z/4Z.

� Ker g ⊆ Im f . Indeed, take (m,n) ∈ Z/8Z⊕Z/2Z, so m ∈ {0, 1, 2, 3, 4, 5, 6, 7}
and n ∈ {0, 1}, and assume that (m,n) ∈ Ker g. Thus m + 2n ≡ 0 mod 4.
Thus m ≡ −2n ≡ 2n mod 4. This is only possible for (m,n) = (0, 0),
(m,n) = (2, 1), (m,n) = (4, 0) or (m,n) = (6, 1). Note that these are precisely
the images under f of 0, 1, 2 and 3 respectively.
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� g is surjective. Indeed, take n ∈ Z/4Z = {0, 1, 2, 3}. Then g(n, 0) = n.

Solution to Exercise 3. � Assume that f, g : C• → D• are chain maps such
that there exists a chain homotopy (hn)n∈Z between f and g. That means
that each hn is an R-linear map Cn → Dn+1 which satisfies, for all n ∈ Z:

hn−1∂
C
n + ∂D

n+1hn = fn − gn

Then we wish to show that for any n ∈ Z, f∗ = g∗ : Hn(C) → Hn(D).

To this end, let [x] ∈ Hn(C) with x ∈ Ker ∂C
n . Then:

f∗([x])− g∗([x]) = [fn(x)− gn(x)] = [hn−1∂
C
n (x) + ∂D

n+1hn(x)]

= [hn−1(0)] + [0] = [0]

where in the second equality we used the definition of a chain homotopy.
In the third equality we used the fact that x ∈ Ker ∂C

n , and further that
∂D
n+1hn(x) ∈ Im ∂D

n+1, which is zero in the quotient Hn(D) = Ker ∂D
n / Im ∂D

n+1.

Hence, we conclude that f∗([x]) = g∗([x]) and therefore f∗ = g∗.

� Suppose that there is a chain homotopy between idC• and 0 : C• → C•. We
wish to show that Hn(C) = 0 for all n ∈ Z.
Note that by the first point, we have that (idC•)∗ = 0∗ : Hn(C) → Hn(C) for
all n ∈ Z. Now (idC•)∗ = idHn(C) (also see the next exercise) and 0∗ = 0, the
zero map. This is only possible if the R-module Hn(C) is the zero module 0.

� We wish to show that there exists a chain complex C• with homology groups
Hn(C) = 0 for all n ∈ Z but which is not contractible. That means, there is
no chain homotopy between idC• : C• → C• and the zero map 0.

Recall that an exact sequence always has trivial homology groups. So consider
for example the exact sequence of Z-modules:

0 2Z Z Z/2Z 0i q

with i the inclusion and q the quotient map. We interpret this as a chain
complex with 2Z in degree 2, Z in degree 1 and Z/2Z in degree 0. The maps
i and q are then the differentials ∂2 and ∂1 respectively.

Suppose this chain compex is contractible. Then there would exist a chain
homotopy between idC• and 0. So there would exist Z-linear maps h1 : Z → 2Z
and h0 : Z/2Z → Z such that

h0q + ih1 = idZ−0

But the only Z-linear map Z/2Z → Z is the zero map, so h0 = 0. Hence,
evaluating the above equation in 1, we find:

ih1(1) = 1
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However, the left hand side must be even, since i is the inclusion 2Z ↪→ Z.
This is a contradiction. Hence, this chain complex is not contractible.

0 2Z Z Z/2Z 0

0 2Z Z Z/2Z 0

i

0id

q

h1 0id h0 0id

Solution to Exercise 4. Let A•, B•, C• be chain complexes and f : A• → B• and
g : B• → C• be chain maps. We wish to show that for all n ∈ Z, we have

(g ◦ f)∗ = g∗ ◦ f∗ : Hn(A) → Hn(C) and (idA)∗ = idHn(A) : Hn(A) → Hn(A)

To this end, take [x] ∈ Hn(A) with x ∈ Ker ∂A
n . Then we have:

(g ◦f)∗([x]) = [(g ◦f)n(x)] = [gn(fn([x]))] = g∗([fn(x)]) = g∗(f∗([x])) = (g∗ ◦f∗)([x])

and
(idC•)∗([x]) = [idCn(x)] = [x] = idHn(C)([x])

which proves the statement.

Solution to Exercise 5. Let f : A• → B• be a chain homotopy equivalence. That
means that there exists a chain map g : B• → A• and chain homotopies between
g ◦ f and idA• , and between f ◦ g and idB• . We wish to show that f is a quasi-
isomorphism. That means that f∗ : Hn(A) → Hn(B) is an isomorphism for all
n ∈ Z.

Using the first point of Exercise 3, we find that (g ◦ f)∗ = (idA•)∗ and (g ◦ f)∗ =
(idB•)∗ for all n ∈ Z. Using Exercise 4, it follows that g∗ ◦ f∗ = idHn(A) and
f∗ ◦ g∗ = idHn(B). Hence, f∗ is an isomorphism with inverse given by g∗.

Further, we wish to find an example of quasi-isomorphism which is not a chain
homotopy equiavelence. For this, we can reuse our example from third point of
Exercise 3. Let C• denote the chain complex

0 2Z Z Z/2Z 0i q

and let 0 denote the chain complex which is everywhere 0. Then let f : C• → 0
be the unique chain map (se fn : Cn → 0 is the zero map). Since all the homology
groups of both C• and 0 are trivial, f is a quasi-isomorphism. However, suppose f
is a chain homotopy equivalence. Then we would have a chain homotopy between
0 = 0 ◦ f and idC• , which is impossible by what we have shown in Exercise 3.

Remark. In fact, for a general chain complex C• we have that C• is contractible
if and only if the unique chain map C• → 0 is a chain homotopy equivalence. Can
you see why?

Note that this is completely analogous to topological spaces: A space X is
contractible if and only if the unique continuous map to a point X → {∗} is a
homotopy equivalence.
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Solution to Exercise 6. Let f : A• → B• and g : B• → C• be chain maps. We
wish to show that if two out of f , g and gf are quasi-isomorphisms, then so is the
third.

Consider the induced morphisms on homology f∗ : Hn(A) → Hn(B) and g∗ :
Hn(B) → Hn(C) for every n ∈ Z. Note that by Exercise 4, we have (gf)∗ = g∗ ◦ f∗.
Now suppose for example that gf and f are quasi-isomorphisms. By definition,
we have that g∗ ◦ f∗ and f∗ are isomorphisms for every n ∈ Z. Hence, also g∗ =
(g∗ ◦ f∗) ◦ f−1

∗ is an isomorphism for every n ∈ Z and thus g is a quasi-isomorphism
as well. A similar argument shows the other cases.
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