Exercise session 3

Algebraic Topology 2024-2025

5 March, 2025

Exercise 1

The following topological spaces are all homotopy equivalent to a wedge product of spheres – not necessarily of the same dimension. Find what each space is homotopy equivalent to. No formal proof is needed, a drawing is enough.

- $\{||x|| > 1\} \subseteq \mathbb{R}^2$
- $\{||x|| \ge 1\} \subseteq \mathbb{R}^2$
- Let $f_0, \ldots f_n \colon \mathbb{R} \to \mathbb{R}^5$ be linear maps.

$$X_2 = \mathbb{R}^5 - \bigcup_i f_i([0,\infty]);$$

- The torus with *n* points removed;
- $S^2 \cup \{x = y = 0\} \subseteq \mathbb{R}^3;$
- $\mathbb{R}^2 \mathbb{R}_+ \times \{0\};$

Exercise 2

Let $f: S^2 \to \mathbb{R}^3$ be a continuous map. Do there always exist antipodal points $-x, x \in S^2$ such that f(x) = f(-x)?

Exercise 3

Let X, Y be path connected spaces. Show that $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$.

Exercise 4

Let $Y \subseteq X$, and denote with *i* the inclusion. A continuous map $r: X \to Y$ is said to be a retraction if $r \circ i = id_Y$. Let $y \in Y$. Show that:

- r is surjective;
- $i_*: \pi_1(Y, y) \to \pi_1(X, y)$ is injective.

Exercise 5

Consider a map $f: S^n \to S^n$ such that for any $x, f(x) \neq -x$. Show that f is homotopic to the identity.

Exercise* 6

Consider a map $g \colon S^n \to S^n$ without any fixed points. Show that g^2 is homotopic to the identity.