Exercise session 11

Algebraic Topology 2024-2025

6 May, 2025

Exercise 1

Let A_{\bullet}, B_{\bullet} and C_{\bullet} be chain complexes of abelian groups. Let

$$0 \to A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \to 0$$

be a short exact sequence of complexes; by definition, this means that for any n, the induced sequence

$$0 \to A_n \to B_n \to C_n \to 0$$

is an exact sequence of abelian groups. The goal of this exercise is to show the existence of a long exact sequence

 $\dots \to H_n(A) \xrightarrow{f_*} H_n(B) \xrightarrow{g_*} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{f_*} H_{n-1}(B) \to \dots$

This is done in steps:

1. Show that the sequence

$$H_n(A) \xrightarrow{f_*} H_n(B) \xrightarrow{g_*} H_n(C)$$

is exact at $H_n(B)$, i.e. Ker $g_* = \text{Im } f_*$.

2. Find a procedure to construct a map

$$H_n(C) \xrightarrow{\partial} H_{n-1}(A).$$

- 3. Show that the map ∂ is well-defined. Is it induced by a (degree -1) chain map $C_{\bullet} \to A_{\bullet}$?
- 4. Show that the sequence

$$\dots \to H_n(A) \xrightarrow{f_*} H_n(B) \xrightarrow{g_*} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{f_*} H_{n-1}(B) \to \dots$$

is exact at $H_n(A)$, i.e. Ker $f_* = \operatorname{Im} \partial$.

5. Show exactness at $H_n(C)$, i.e. that Ker $\partial = \text{Im } g_*$.

Exercise 2

Let

$$0 \to A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \to 0$$

be a short exact sequence of complexes. how that if two out of $A_{\bullet}, B_{\bullet}, C_{\bullet}$ are acyclic (that is, their homology vanishes) so is the third. Show that C_{\bullet} (resp. A_{\bullet}) is acyclic if and only if f (resp. g) is a quasi-isomorphism (recall that f is said to be a quasi-isomorphism if and only if f_* is an isomorphism).

Exercise 3

Let

$$0 \to A \to B \to C \to 0$$

be a short exact sequence of vector spaces. Show that

$$\dim A - \dim B + \dim C = 0.$$

Exercise 4 (Optional)

Let

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

and

$$0 \to A'_{\bullet} \to B'_{\bullet} \to C'_{\bullet} \to 0$$

be short exact sequences of complexes, and let

be a commutative diagram with f, g, h chain maps. Show that if two out if f, g, h are quasi-isomorphisms, so is the third.