Exercise session 10

Algebraic Topology 2024-2025

29 April, 2025

Exercise 1

Prove or find a counterexample to the following statement: let X be a topological space which is the union of two contractible subspaces $A, B \subseteq X$ with contractible intersection. Then X is contractible.

Exercise 2

Determine whether one can have an exact sequence of the form

$$0 \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to 0.$$

Exercise 3

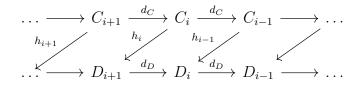
Let

$$C_{\bullet} = \ldots \to C_{i+1} \xrightarrow{d_C} C_i \xrightarrow{d_C} C_{i-1} \to \ldots$$

and

$$D_{\bullet} = \ldots \to D_{i+1} \stackrel{d_D}{\to} D_i \stackrel{d_D}{\to} D_{i-1} \to \ldots$$

be chain complexes of abelian groups, and $f, g: C_{\bullet} \to D_{\bullet}$ morphisms of chain complexes. A homotopy between f and g is by definition a collection of maps of abelian groups $\{h_i: C_i \to D_{i+1}\}$



such that $h_{i-1}d_C + d_Dh_i = f_i - g_i$ for all i.

- Show that if there exists a homotopy between f and g, then $H_n(f) = H_n(g) \colon H_n(C) \to H_n(D)$.
- Show that if there exists a homotopy between the identity of C and the zero map, then $H_n(C) = 0$ for any n. In this case we will say that the chain complex C_{\bullet} is contractible.

• Find an example of a chain complex with $H_n(C) = 0$ for all n which is not contractible.

Exercise 4

Let $A_{\bullet}, B_{\bullet}, C_{\bullet}$ be chain complexes of abelian groups and let

$$A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet}$$

be chain maps. Show that $(\mathrm{id}_A)_* = \mathrm{id}_{H_{\bullet}(A)}$ and $(g \circ f)_* = g_* \circ f_*$.

Exercise 5

Let $A_{\bullet} \xrightarrow{f} B_{\bullet}$ be a chain map. The map f is said to be a quasi-isomorphism if $f_* \colon H_{\bullet}(A) \to H_{\bullet}(B)$ is an isomorphism; f is said to be a homotopy equivalence if there exists chain map $B_{\bullet} \xrightarrow{g} A_{\bullet}$ such that fg is homotopic to id_B and gf is homotopic to id_A . Show that any homotopy equivalence is a quasi-isomorphism. Find an example of a quasi-isomorphism that is not a homotopy equivalence.

Exercise 6

Let $A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet}$ be chain maps. Show that if two out of f, g, fg are quasi-isomorphisms, so is the third.