Homework 4 Algebraic Topology 2024-2025 Due 7 may, 2025

Exercise 1. Consider the following two topological spaces:

- $X = \Delta^2 / \partial \Delta^2$ where Δ^2 is the topological 2-simplex and $\partial \Delta^2$ is the union of its three edges (its boundary).
- $Y = \Delta^2 \coprod_i \Delta^2$, the space Δ^2 with Δ^2 attached along the inclusion $i : \partial \Delta^2 \hookrightarrow \Delta^2$ (see p.13 in Hatcher). We may interpret this space as two triangles which are glued to each other along their boundary.

Show that both X and Y are homeomorphic to the sphere S^2 . (*Hint:* Use the fact that $\Delta^2 \cong D^2$ and $\partial \Delta^2 \cong S^1$.)

Exercise 2. Note that Δ^2 is cell complex with three 0-cells (the vertices), three 1-cells (the edges without the vertices) and one 2-cell (the interior of the triangle). This induces cell structures on X and Y, which correspond to the two familiar cell structures on S^2 . Convince yourself that this is true (you do not need to prove this).

- Just like the example we saw in class, construct a chain complex $C^{CW}_{\bullet}(X)$ such that for all $n \in \mathbb{N}$, $C^{CW}_n(X)$ is the free abelian group with basis given by the *n*-cells of X. What would be a reasonable definition of the differential? (*Hint:* Get inspiration from the definition of the singular chain complex.)
- Similarly, construct a chain complex $C^{CW}_{\bullet}(Y)$ with the same property for Y. Again find a reasonable definition for the differential.

Exercise 3. Show that $C^{CW}_{\bullet}(X)$ and $C^{CW}_{\bullet}(Y)$ have isomorphic homology groups.