
Let’s use the Mayer-Vietoris sequence to compute the homology of spheres.
First, the case of S1. Cover S1 with two opens U, V which are both con-
tractible and such that the intersection is homotopy equivalent to two points
(note that there is no connectivity hypothesis in the Mayer-Vietoris se-
quence!). S1 is arc connected, so H0(S

1) = R. It’s easy to show that all
the homology groups for n ≥ 2 vanish: we have an exact sequence

0 = Hn(U)⊕Hn(V ) → Hn(S1) → Hn(U ∩ V ) = 0

so Hn(S1) = 0 for n ≥ 2. The case n = 1 is slightly more complicated,
because in this case the exact sequence is

0 → H1(S1) → H0(U ∩ V ) → H0(U)⊕H0(V ) → H0(X) → 0

which concretely is an exact sequence

0 → H1(S1) → R⊕R
f→ Z⊕ Z → Z → 0

so that H1(S1) is isomorphic to the kernel of f . Unraveling the definitions,
one finds that f(x, y) = (x+y, x+y) (check this!) and therefore H1(S

1) = Z.
This generalizes easily to higher dimensions: consider the sphere Sn for

n ≥ 2, and cover it by two opens U, V which are contractible and whose
intersection is homotopy equivalent to the sphere Sn−1 (for example, you
can take U and V to be the whole sphere minus the north and south pole
respectively). Then the Mayer-Vietoris sequence gives, for k ≥ 1, an exact
sequence

0 → Hk(S
n) → Hk−1(Sn−1) → 0

so Hk(S
n) ∼= Hk−1(S

n−1) and hence, by induction Hn(S
n) = Z and Hi(S

n) =
0 for i > n. Similarly, one shows that Hi(S

n) = 0 for 0 < i < n. Hence,

Hk(S
n) =

{
Z for k = 0 and k = n;

0 otherwise.
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