
Exercise session 9

Algebraic Topology 2022-2023

Due 2 May

In the following I will often write Hn(X) instead of Hn(X,R), for brevity.
Always assume an arbitrary base ring R.

Reminder: The Mayer-Vietoris sequence

Since in class I went through it very quickly, I will write something about
the Mayer-Vietoris sequence that is useful for the exercises. Let X be a
topological space and A,B two open sets that cover X. Denote with i, j the
inclusions A,B → X and with k, l the inclusions A∩B → A,B. Then there
is a long exact sequence

. . . → Hn+1(X)
∂→ Hn(A ∩B, )

(k∗,l∗)→ Hn(A)⊕Hn(B)
i∗−j∗→ Hn(X) → . . .

The map ∂ is defined by homological means, but it is possible to give an
explicit interpretation: an n-chain c in Hn+1(X,R) can always be written
(for example by baricentric subdivision) as a sum c = u+ v where the image
of u lies in A and the image of v lies in B. Since dc = 0, one has du = −dv
and then the image of du is fully contained in the intersection A ∩ B. Then
the class ∂[x] can be defined as the class of du in Hn(A ∩ B,R). Note
that, despite ∂[x] being defined as a boundary, it is not necessarily zero in
homology because u is not an element of Cn+1(A ∩B,R).
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Application: the homology of spheres

Let’s use the Mayer-Vietoris sequence to compute the homology of spheres.
This is also in the notes, but I am writing it here as a guide for the exer-
cises. First, the case of S1. Cover S1 with two opens U, V which are both
contractible and such that the intersection is homotopy equivalent to two
points (note that there is no connectivity hypothesis in the Mayer-Vietoris
sequence!). S1 is arc connected, so H0(S

1, R) = R. It’s easy to show that all
the homology groups for n ≥ 2 vanish: we have an exact sequence

0 = Hn(U)⊕Hn(V ) → Hn(S1) → Hn(U ∩ V ) = 0

so Hn(S1) = 0 for n ≥ 2. The case n = 1 is slightly more complicated,
because in this case the exact sequence is

0 → H1(S1) → H0(U ∩ V ) → H0(U)⊕H0(V ) → H0(X) → 0

which concretely is an exact sequence

0 → H1(S1) → R⊕R
f→ R⊕R → R → 0

so that H1(S1) is isomorphic to the kernel of f . Unraveling the definitions,
one finds that f(x, y) = (x+y, x+y) (check this!) and therefore H1(S

1) = R.
This generalizes easily to higher dimensions: consider the sphere Sn for

n ≥ 2, and cover it by two opens U, V which are contractible and whose
intersection is homotopy equivalent to the sphere Sn−1 (for example, you
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can take U and V to be the whole sphere minus the north and south pole
respectively). Then the Mayer-Vietoris sequence gives, for k ≥ 1, an exact
sequence

0 → Hk(S
n) → Hk−1(Sn−1) → 0

so Hk(S
n) ∼= Hk−1(S

n−1). Therefore by induction

Hk(S
n, R) =

{
R for k = 0 and k = n;

0 otherwise.

Exercise 1

Compute the homology of the following spaces;

• The wedge sum Sn ∨ Sm;

• Rn − Rm, for n > m ≥ 0;

• The bouquet S1 ∨ . . . ∨ S1︸ ︷︷ ︸
n times

;

• R3 − S1.

Exercise 2

Let X be a topological space. Consider the cylinder X× [0, 1], and define the
suspension SX as the space obtained by X × [0, 1] by collapsing to a point
the two faces X × {0} and X × {1} (each face to a different point, not the
same one). One can think of SX as the space constructed by stretching X to
a cylinder and then pinching the end points; as an example, the suspension
of S1 is S2, and in general the suspension of Sn is Sn+1.

Compute the homology of SX in terms of the homology of X.
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Exercise 3

Let Xn be the product S1 × . . .× S1︸ ︷︷ ︸
n times

. Show that

Hk(Xn, R) =

{
R(nk) for k ≤ n

0 for k > n.

You may want to use induction and the identity
(
n−1
k

)
+

(
n−1
k−1

)
=
(
n
k

)
.

Exercise 4

Show that, to to a decomposition of a space X into the union of its path con-
nected components X = ∪αXα corresponds a decomposition of its singular
homology

Hn(X,R) ∼=
⊕
α

Hn(Xα, R).

Exercise 5

Recall the characterization of the torus T 1 as the quotient of a square ob-
tained by identifying the opposite sides.

• Consider a regular polygon with 4g sides; denote its sides, ordered in
a circular way,

a1, b1, a
−1
1 , b−1

1 , a2, b2, . . . , a
−1
g , b−1

g .

Orientate the boundary by taking the sides denoted with ai, bi with the
same orientation as the boundary and the ones denoted with a−1

i , b−1
i

with the opposite one. Below is the case g = 2.
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Denote with Mg the surface obtained by identifying ai with a−1
i and bi

with b−1
i . This is called the genus g surface, or torus with g holes.

• Calculate π1(Mg) (as usual, by generators and relations).

• Compute the homology of Mg.

Exercise* 6

The goal of this exercise is to determine the relation between the first homol-
ogy group and the fundamental group. LetX be a path connected topological
space, and x ∈ X any point.

Begin by constructing a map a : π1(X, x) → H1(X,Z) in the following
way: any loop γ : [0, 1] → X defines tautologically a singular 1-chain obtained
by identifying [0, 1] with |∆1|; call this chain a(γ).

• Show that a(γ) is a cycle, so that it defines an element in H1(X,Z);
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• Show that a is well defined, i.e. that it only depends on the (based)
homotopy class of γ;

• Show that a is surjective;

• Prove that the commutator subgroup [π1(X, x), π1(X, x)] ⊆ π1(X, x)
lies in the kernel of a.

• Prove that any element in the kernel of a lies in the commutator sub-
group;

• Conclude that there is an isomorphism

H1(X,Z) ∼=
π1(X, x)

[π1(X, x), π1(X, x)]
.

This quotient is known as the abelianization of π1(X, x).
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