Exercise session 9

Algebraic Topology 2022-2023
Due 2 May

In the following I will often write H,, (X) instead of H,,(X, R), for brevity.
Always assume an arbitrary base ring R.

Reminder: The Mayer-Vietoris sequence

Since in class I went through it very quickly, I will write something about
the Mayer-Vietoris sequence that is useful for the exercises. Let X be a
topological space and A, B two open sets that cover X. Denote with 4, j the
inclusions A, B — X and with k,[ the inclusions AN B — A, B. Then there
is a long exact sequence

oo Hon(X) S H (AN B,) ") H(A) @ Hy(B) " Hy(X) — ...

The map 0 is defined by homological means, but it is possible to give an
explicit interpretation: an n-chain ¢ in H, (X, R) can always be written
(for example by baricentric subdivision) as a sum ¢ = v+ v where the image
of u lies in A and the image of v lies in B. Since dc = 0, one has du = —dv
and then the image of du is fully contained in the intersection A N B. Then
the class O[x] can be defined as the class of du in H,(A N B,R). Note
that, despite O[z] being defined as a boundary, it is not necessarily zero in
homology because u is not an element of C,11(A N B, R).



Application: the homology of spheres

Let’s use the Mayer-Vietoris sequence to compute the homology of spheres.
This is also in the notes, but I am writing it here as a guide for the exer-
cises. First, the case of S'. Cover S! with two opens U,V which are both
contractible and such that the intersection is homotopy equivalent to two
points (note that there is no connectivity hypothesis in the Mayer-Vietoris
sequence!). S' is arc connected, so Hy(S', R) = R. It’s easy to show that all
the homology groups for n > 2 vanish: we have an exact sequence

0=H"(U)® H"(V) = H"(S*) - H*(UNV) =0

so H"(S') = 0 for n > 2. The case n = 1 is slightly more complicated,
because in this case the exact sequence is

0— HY(SY) - HUNV) = HU)® H (V) —» H*(X) =0
which concretely is an exact sequence
0— H'(SY) >R®RLRO®R— R — 0

so that H'(S') is isomorphic to the kernel of f. Unraveling the definitions,
one finds that f(z,y) = (x+y,z+y) (check this!) and therefore H;(S') = R.

This generalizes easily to higher dimensions: consider the sphere S™ for
n > 2, and cover it by two opens U,V which are contractible and whose
intersection is homotopy equivalent to the sphere S™~! (for example, you
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can take U and V to be the whole sphere minus the north and south pole
respectively). Then the Mayer-Vietoris sequence gives, for k& > 1, an exact

sequence
0— Hp(S") = Hp_1(Sp-1) — 0

so H(S™) = Hy,_1(S™!). Therefore by induction

for k = dk=mn;
Hy(S™ R) = {R or 0 an n;

0 otherwise.

Exercise 1

Compute the homology of the following spaces;

e The wedge sum S™ Vv S™;
e R*" —R™ forn >m > 0;

e The bouquet S* v ... v S
——

n times

o R3— S

Exercise 2

Let X be a topological space. Consider the cylinder X x [0, 1], and define the
suspension SX as the space obtained by X x [0, 1] by collapsing to a point
the two faces X x {0} and X x {1} (each face to a different point, not the
same one). One can think of SX as the space constructed by stretching X to
a cylinder and then pinching the end points; as an example, the suspension
of St is S2%, and in general the suspension of S™ is S™*+1.

N
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Compute the homology of SX in terms of the homology of X.



Exercise 3

Let X,, be the product S* x ... x S!. Show that
—_——

n times

R(Z) for k<n
0 for k£ > n.

You may want to use induction and the identity (”;1) + (Zj) =(7).

Exercise 4

Show that, to to a decomposition of a space X into the union of its path con-
nected components X = U, X, corresponds a decomposition of its singular
homology

H,(X,R) = P H.(Xa, R).

Exercise 5

Recall the characterization of the torus 7" as the quotient of a square ob-
tained by identifying the opposite sides.

e Consider a regular polygon with 4¢ sides; denote its sides, ordered in
a circular way,

-1 -1 -1 -1
a17b17a1 7b1 7a27b27"'7a’g 7bg :

Orientate the boundary by taking the sides denoted with a;, b; with the
same orientation as the boundary and the ones denoted with a; ', b;!
with the opposite one. Below is the case g = 2.



-1 a2
b,
a4
bl i 1
d;

Denote with M, the surface obtained by identifying a; with a; Land b;
with b;!. This is called the genus g surface, or torus with g holes.

e Calculate m1(M,) (as usual, by generators and relations).

e Compute the homology of M,.

Exercise* 6

The goal of this exercise is to determine the relation between the first homol-
ogy group and the fundamental group. Let X be a path connected topological
space, and x € X any point.

Begin by constructing a map a: m(X,z) — Hy(X,Z) in the following
way: any loop 7: [0, 1] — X defines tautologically a singular 1-chain obtained
by identifying [0, 1] with |A;]; call this chain a(7).

e Show that a(y) is a cycle, so that it defines an element in Hy(X,Z);
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Show that a is well defined, i.e. that it only depends on the (based)
homotopy class of ~;

Show that a is surjective;

Prove that the commutator subgroup [m (X, z), m (X, z)] C m (X, )
lies in the kernel of a.

Prove that any element in the kernel of a lies in the commutator sub-
group;

Conclude that there is an isomorphism

(X, x)

M= G X ) (X, )

This quotient is known as the abelianization of m (X, ).



