Exercise session 9

Algebraic Topology 2022-2023
Due 2 May

In the following I will often write $H_{n}(X)$ instead of $H_{n}(X, R)$, for brevity. Always assume an arbitrary base ring R.

Reminder: The Mayer-Vietoris sequence

Since in class I went through it very quickly, I will write something about the Mayer-Vietoris sequence that is useful for the exercises. Let X be a topological space and A, B two open sets that cover X. Denote with i, j the inclusions $A, B \rightarrow X$ and with k, l the inclusions $A \cap B \rightarrow A, B$. Then there is a long exact sequence

$$
\ldots \rightarrow H_{n+1}(X) \xrightarrow{\partial} H_{n}(A \cap B,) \xrightarrow{\left(k_{*} l_{*}\right)} H_{n}(A) \oplus H_{n}(B) \xrightarrow{i_{*}-j_{*}} H_{n}(X) \rightarrow \ldots
$$

The map ∂ is defined by homological means, but it is possible to give an explicit interpretation: an n-chain c in $H_{n+1}(X, R)$ can always be written (for example by baricentric subdivision) as a sum $c=u+v$ where the image of u lies in A and the image of v lies in B. Since $d c=0$, one has $d u=-d v$ and then the image of $d u$ is fully contained in the intersection $A \cap B$. Then the class $\partial[x]$ can be defined as the class of $d u$ in $H_{n}(A \cap B, R)$. Note that, despite $\partial[x]$ being defined as a boundary, it is not necessarily zero in homology because u is not an element of $C_{n+1}(A \cap B, R)$.

Application: the homology of spheres

Let's use the Mayer-Vietoris sequence to compute the homology of spheres. This is also in the notes, but I am writing it here as a guide for the exercises. First, the case of S^{1}. Cover S^{1} with two opens U, V which are both contractible and such that the intersection is homotopy equivalent to two points (note that there is no connectivity hypothesis in the Mayer-Vietoris sequence!). S^{1} is arc connected, so $H_{0}\left(S^{1}, R\right)=R$. It's easy to show that all the homology groups for $n \geq 2$ vanish: we have an exact sequence

$$
0=H^{n}(U) \oplus H^{n}(V) \rightarrow H^{n}\left(S^{1}\right) \rightarrow H^{n}(U \cap V)=0
$$

so $H^{n}\left(S^{1}\right)=0$ for $n \geq 2$. The case $n=1$ is slightly more complicated, because in this case the exact sequence is

$$
0 \rightarrow H^{1}\left(S^{1}\right) \rightarrow H^{0}(U \cap V) \rightarrow H^{0}(U) \oplus H^{0}(V) \rightarrow H^{0}(X) \rightarrow 0
$$

which concretely is an exact sequence

$$
0 \rightarrow H^{1}\left(S^{1}\right) \rightarrow R \oplus R \xrightarrow{f} R \oplus R \rightarrow R \rightarrow 0
$$

so that $H^{1}\left(S^{1}\right)$ is isomorphic to the kernel of f. Unraveling the definitions, one finds that $f(x, y)=(x+y, x+y)$ (check this!) and therefore $H_{1}\left(S^{1}\right)=R$.

This generalizes easily to higher dimensions: consider the sphere S^{n} for $n \geq 2$, and cover it by two opens U, V which are contractible and whose intersection is homotopy equivalent to the sphere S^{n-1} (for example, you
can take U and V to be the whole sphere minus the north and south pole respectively). Then the Mayer-Vietoris sequence gives, for $k \geq 1$, an exact sequence

$$
0 \rightarrow H_{k}\left(S^{n}\right) \rightarrow H_{k-1}\left(S_{n-1}\right) \rightarrow 0
$$

so $H_{k}\left(S^{n}\right) \cong H_{k-1}\left(S^{n-1}\right)$. Therefore by induction

$$
H_{k}\left(S^{n}, R\right)= \begin{cases}R & \text { for } k=0 \text { and } k=n \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 1

Compute the homology of the following spaces;

- The wedge sum $S^{n} \vee S^{m}$;
- $\mathbb{R}^{n}-\mathbb{R}^{m}$, for $n>m \geq 0$;
- The bouquet $\underbrace{S^{1} \vee \ldots \vee S^{1}}_{n \text { times }}$;
- $\mathbb{R}^{3}-S^{1}$.

Exercise 2

Let X be a topological space. Consider the cylinder $X \times[0,1]$, and define the suspension $S X$ as the space obtained by $X \times[0,1]$ by collapsing to a point the two faces $X \times\{0\}$ and $X \times\{1\}$ (each face to a different point, not the same one). One can think of $S X$ as the space constructed by stretching X to a cylinder and then pinching the end points; as an example, the suspension of S^{1} is S^{2}, and in general the suspension of S^{n} is S^{n+1}.

Compute the homology of $S X$ in terms of the homology of X.

Exercise 3

Let X_{n} be the product $\underbrace{S^{1} \times \ldots \times S^{1}}_{n \text { times }}$. Show that

$$
H_{k}\left(X_{n}, R\right)= \begin{cases}R^{\binom{n}{k}} & \text { for } k \leq n \\ 0 & \text { for } k>n\end{cases}
$$

You may want to use induction and the identity $\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}$.

Exercise 4

Show that, to to a decomposition of a space X into the union of its path connected components $X=\cup_{\alpha} X_{\alpha}$ corresponds a decomposition of its singular homology

$$
H_{n}(X, R) \cong \bigoplus_{\alpha} H_{n}\left(X_{\alpha}, R\right)
$$

Exercise 5

Recall the characterization of the torus T^{1} as the quotient of a square obtained by identifying the opposite sides.

- Consider a regular polygon with $4 g$ sides; denote its sides, ordered in a circular way,

$$
a_{1}, b_{1}, a_{1}^{-1}, b_{1}^{-1}, a_{2}, b_{2}, \ldots, a_{g}^{-1}, b_{g}^{-1}
$$

Orientate the boundary by taking the sides denoted with a_{i}, b_{i} with the same orientation as the boundary and the ones denoted with a_{i}^{-1}, b_{i}^{-1} with the opposite one. Below is the case $g=2$.

Denote with M_{g} the surface obtained by identifying a_{i} with a_{i}^{-1} and b_{i} with b_{i}^{-1}. This is called the genus g surface, or torus with g holes.

- Calculate $\pi_{1}\left(M_{g}\right)$ (as usual, by generators and relations).
- Compute the homology of M_{g}.

Exercise* 6

The goal of this exercise is to determine the relation between the first homology group and the fundamental group. Let X be a path connected topological space, and $x \in X$ any point.

Begin by constructing a map $a: \pi_{1}(X, x) \rightarrow H_{1}(X, \mathbb{Z})$ in the following way: any loop $\gamma:[0,1] \rightarrow X$ defines tautologically a singular 1-chain obtained by identifying $[0,1]$ with $\left|\Delta_{1}\right|$; call this chain $a(\gamma)$.

- Show that $a(\gamma)$ is a cycle, so that it defines an element in $H_{1}(X, \mathbb{Z})$;
- Show that a is well defined, i.e. that it only depends on the (based) homotopy class of γ;
- Show that a is surjective;
- Prove that the commutator subgroup $\left[\pi_{1}(X, x), \pi_{1}(X, x)\right] \subseteq \pi_{1}(X, x)$ lies in the kernel of a.
- Prove that any element in the kernel of a lies in the commutator subgroup;
- Conclude that there is an isomorphism

$$
H_{1}(X, \mathbb{Z}) \cong \frac{\pi_{1}(X, x)}{\left[\pi_{1}(X, x), \pi_{1}(X, x)\right]}
$$

This quotient is known as the abelianization of $\pi_{1}(X, x)$.

