Exercise session 1

Algebraic Topology 2022-2023

14 February, 2023

Exercise 1 [Exercise 1.1.8 from the notes]

Prove that any metrizable space is Hausdorff.

Exercise 2 [Exercise 1.2.7 from the notes]

Consider the equivalence relation \sim on \mathbb{R}^2 generated by $(x, y) \sim (\lambda x, \lambda y)$ for $\lambda \in \mathbb{R} - \{0\}$. Prove that \mathbb{R}^2 / \sim is not Hausdorff.

Exercise 3 [Exercise 1.2.8 from the notes]

Consider the product topology on $\mathbb{R}^n = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{n \text{ times}}$. Show that it agrees with the topology on \mathbb{R}^n induced by the metric

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Exercise 4 [Box topology]

If $(X_i)_{i \in I}$ is an (in general infinite) collection of topological spaces, you have seen in class the definition of the product topology on the set $\prod_i X_i$. We can alternatively define a different topology, τ_{box} , by choosing as a base for the topology the sets of the form $\prod_i U_i$, where each U_i is an open of X_i . The topology τ_{box} is called the box topology.

- How is this topology different to the product topology?
- Show that $\left(\prod_{i} X_{i}, \tau_{\text{box}}\right)$ does not have the universal property of a product. Hint: show that the function

$$\mathbb{R} \to \prod_{\mathbb{N}} \mathbb{R}$$
$$x \to (x, x, x, \ldots)$$

which is the identity on every component is not continuous in the box topology.

Exercise 5 [Stereographic projection]

Show that $S^n - \{p\}$, where p is any point of the sphere, is homeomorphic to \mathbb{R}^n . You don't have to write precise formulas, a drawing is sufficient.

Exercise 6

Show that \mathbb{R} is not homeomorphic to \mathbb{R}^2 . To solve this exercise it is useful to know the concept of connectedness.

Exercise 7 [Exercise 1.4.2 from the notes]

Show that $\mathcal{C}(S^1) \subseteq \mathcal{C}(\mathbb{R})$ consists of the functions $f : \mathbb{R} \to \mathbb{R}$ that are periodic, in the sense that f(x+k) = f(x) for any $x \in \mathbb{R}$ and $k \in \mathbb{Z}$. Can you characterize in the same way $\mathcal{C}(S^1 \times S^1)$?